Grand Touring 700/SE Formula III 600/600 R/ 600 LT/700/700 R Mach 1/1 R/Z/Z R/Z LT/Z LT R

Shop Manual Volume 3

R

484 0684 00

1998 Shop Manual

VOLUME 3

GRAND TOURING 700/SE FORMULA III 600/600 R/600 LT/700/700 R MACH 1/1 R/Z/Z R/Z LT/Z LT R

Legal deposit:

National Library of Quebec 4th trimester 1997 National Library of Canada1997

All rights reserved. No parts of this manual may be reproduced in any form without the prior written permission of Bombardier Inc. [®]Bombardier Inc. 1997

Technical Publications Bombardier Inc. Valcourt (Quebec) Canada

Printed in Canada ®*Registered trademarks of Bombardier Inc.

This document contains the trademarks of the following companies: Kimtowels® is a trademark of Kimberly-Clark Loctite® is a trademark of Loctite Corporation Metton® is a trademark of Hercules Inc. Molykote® is a trademark of Dow Corning Corporation Silastic® is a trademark of Dow Corning Corporation Snap-on® is a trademark of Snap-on Tools Corporation Versilube® is a trademark of General Electric Company Supertanium[™] is a trademark of Premier Industrial Corporation

TABLE OF CONTENTS

SEC	TION	SUBSECTION	PAGE
SAF	ETY NOTICE		III
WHA	AT'S NEW		IV
INTF	RODUCTION		V
01	SERVICE TOOLS AND SERVICE PRODUCTS	01 – Service tools 02 – Service products	
02	LUBRICATION AND MAINTENANCE	01 – Lubrication and maintenance chart	02-01-1
03	TROUBLESHOOTING	 01 – Table of contents 02 – Engine 03 – Fuel and oil systems 04 – Transmission and brake systems 05 – Electrical system 06 – Suspension and track 	03-02-1 03-03-1 03-04-1 03-05-1
04	ENGINE	 01 - Table of contents 02 - 599, 699 and 809 engine types 03 - Leak test and engine dimension measurement 04 - CDI system 05 - Oil injection system 06 - Liquid cooling system 07 - Rewind starter 08 - Carburetor and fuel pump 09 - Fuel tank and throttle cable 	04-02-1 04-03-1 04-04-1 04-05-1 04-06-1 04-07-1 04-08-1
05	TRANSMISSION	01 – Table of contents 02 – Drive belt 03 – Drive pulley 04 – Driven pulley 05 – Pulley distance and alignment 06 – Brake 07 – Chaincase 08 – Gearbox 09 – Drive chain	05-02-1 05-03-1 05-04-1 05-05-1
06	ELECTRICAL	01 – Table of contents 02 – Ignition timing 03 – Spark plugs 04 – Battery 05 – Electric starter 06 – Testing procedure	06-01-1 06-02-1 06-03-1 06-04-1 06-05-1 06-06-1
07	REAR SUSPENSION	01 – Table of contents 02 – SC-10 suspension 03 – Drive axle 04 – Track	

TABLE OF CONTENTS

SEC	TION	SUBSECTION	PAGE
08	STEERING/ FRONT SUSPENSION	01 – Table of contents 02 – Steering system 03 – Suspension and ski system	08-01-1 08-02-1 08-03-1
09	BODY/FRAME	01 – Table of contents 02 – Body 03 – Frame	09-01-1 09-02-1 09-03-1
10	TECHNICAL DATA	01 – SI metric information guide 02 – Engines 03 – Vehicles 04 – Technical data legends	10-01-1 10-02-1 10-03-1 10-04-1
11	WIRING DIAGRAMS	01 – Wiring diagrams	11-01-1

SAFETY NOTICE

This manual has been prepared as a guide to correctly service and repair some 1998 Ski-Doo snowmobiles. See model list on next page.

This edition was primarily published to be used by snowmobile mechanics who are already familiar with all service procedures relating to Bombardier made snowmobiles.

Please note that the instructions will apply only if proper hand tools and special service tools are used.

This *Shop Manual* uses technical terms which may be slightly different from the ones used in the *Parts Catalog*.

It is understood that this manual may be translated into another language. In the event of any discrepancy, the English version shall prevail.

The content depicts parts and/or procedures applicable to the particular product at its time of manufacture. It does not include dealer modifications, whether authorized or not by Bombardier, after manufacturing the product.

In addition, the sole purpose of the illustrations throughout the manual, is to assist identification of the general configuration of the parts. They are not to be interpreted as technical drawings or exact replicas of the parts.

The use of Bombardier parts is most strongly recommended when considering replacement of any component. Dealer and/or distributor assistance should be sought in case of doubt.

The engines and the corresponding components identified in this document should not be utilized on product(s) other than those mentioned in this document.

Torque wrench tightening specifications must be strictly adhered to. Locking devices (ex.: locking tab, elastic stop nut, etc.) must be installed or replaced with new ones, where specified. If the efficiency of a locking device is impaired, it must be renewed.

This manual emphasizes particular information denoted by the wording and symbols:

Identifies an instruction which, if not followed, could cause serious personal injury including possibility of death.

Denotes an instruction which, if not followed, could severely damage vehicle components.

NOTE: Indicates supplementary information needed to fully complete an instruction.

Although the mere reading of such information does not eliminate the hazard, your understanding of the information will promote its correct use. Always use common shop safety practice.

This information relates to the preparation and use of Bombardier snowmobiles and has been utilized safely and effectively by Bombardier Inc. However, Bombardier Inc. disclaims liability for all damages and/or injuries resulting from the improper use of the contents. We strongly recommend that any services be carried out and/or verified by a highly skilled professional mechanic. It is understood that certain modifications may render use of the vehicle illegal under existing federal, provincial and state regulations.

WHAT'S NEW

WHAT'S NEW

INTRODUCTION

• List of abbreviations used in this manual.

SERVICE TOOLS AND SERVICE PRODUCTS 01

• Complete new section.

LEAK TEST AND ENGINE DIMENSION MEASUREMENT 04-04

- Procedure for cylinder/piston clearance measurement.
- Procedure for combustion chamber volume measurement.
- Procedure for cylinder head warpage measurement.

CARBURETOR AND FUEL PUMP 04-08

All Models Except Mach Z Series and Grand Touring SE

• New procedure for choke plunger adjustment. This procedure is the same as in the *Service Bulletin 96-30.*

CHAINCASE 05-07

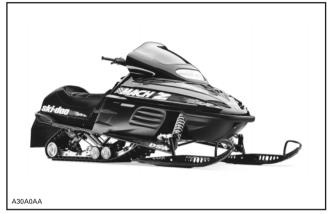
• Countershaft bearing sealed side is facing cover.

GEARBOX 05-08

• Countershaft bearing sealed side is facing cover.

TESTING PROCEDURE 06-06

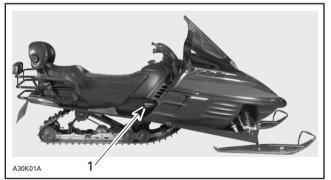
• Complete new testing procedures using only a multimeter.


This Shop Manual Volume 3 covers the following Bombardier made 1998 snowmobiles:

	MODEL	MODELS	MODEL
MODELS	NUMBER	MODELS	NUMBER
FORMULA* III 600 (Canada)	. 1334	MACH* Z LT SV TRACK (Canada).	. 1303
FORMULA* III 600 (U.S.)	. 1335	MACH* Z LT SV TRACK (U.S.)	. 1316
FORMULA* III 600 R (Canada)	. 1332	MACH* Z LT R (Canada)	. 1304
FORMULA* III 600 R (U.S.)	. 1333	MACH* Z LT R (U.S.)	. 1317
FORMULA* III 600 LT (Canada)	. 1206	GRAND TOURING 700 (Canada)	. 1211
FORMULA* III 600 LT (U.S.)	. 1207	GRAND TOURING 700 (U.S.)	. 1318
FORMULA* III 700 (Canada)	. 1208	GRAND TOURING 700 (Europe)	. 1212
FORMULA* III 700 (U.S.)	. 1209	GRAND TOURING SE (Canada)	. 1210
FORMULA* III 700 R (Canada)	. 1296	GRAND TOURING SE (U.S.)	. 1319
FORMULA* III 700 R (U.S.)	. 1297	GRAND TOURING SE (Europe)	. 1217
MACH* 1 (Canada)	. 1202		
MACH* 1 (U.S.)	. 1311		
MACH* 1 (Europe)	. 1203		
MACH* 1 R (Canada)	. 1295		
MACH* 1 R (U.S.)	1314		
MACH* Z (Canada)	. 1200		
MACH* Z (U.S.)	. 1312		
MACH* Z (Europe)	. 1290		
MACH* Z R (Canada)	. 1294		
MACH* Z R (U.S.)	. 1313		
MACH* Z LT (Canada)	. 1302		
MACH* Z LT (U.S.)	. 1315		
MACH* Z LT (Europe)	. 1308		

*Trademarks of Bombardier Inc.

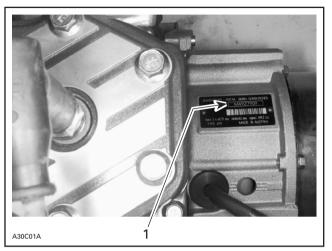
Grand Touring 700/SE Formula III 600/600 R/600 LT/700/700 R Mach 1/1 R/Z/Z R/Z LT/Z LT R


These are CK3 Series models.

TYPICAL — CK3 SERIES

VEHICLE SERIAL NUMBER

Vehicle Serial Number Location


TYPICAL 1. Vehicle serial number

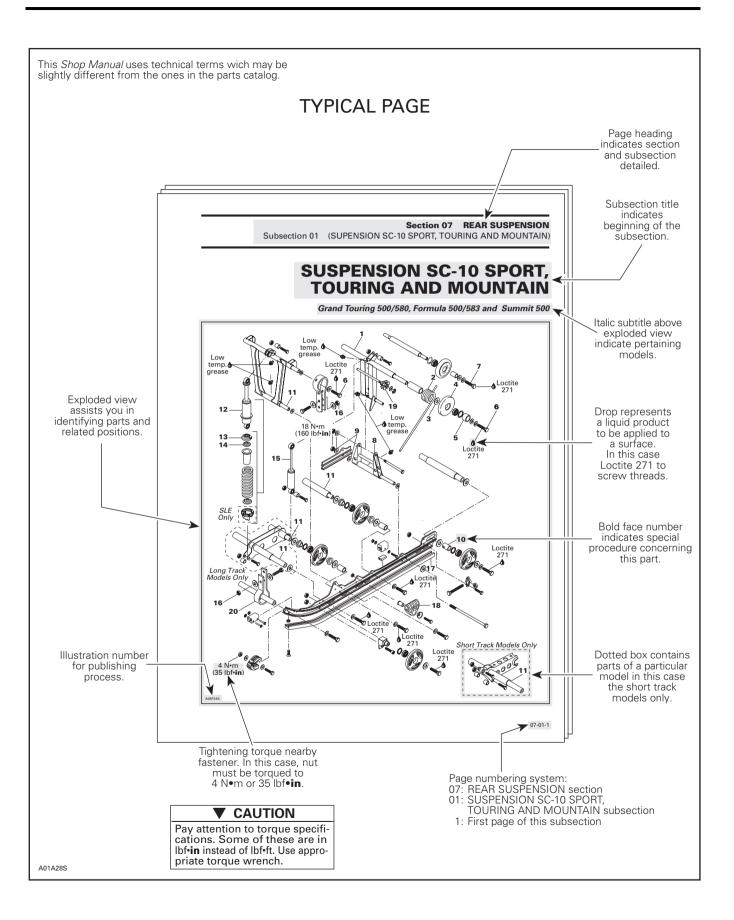
Serial Number Meaning

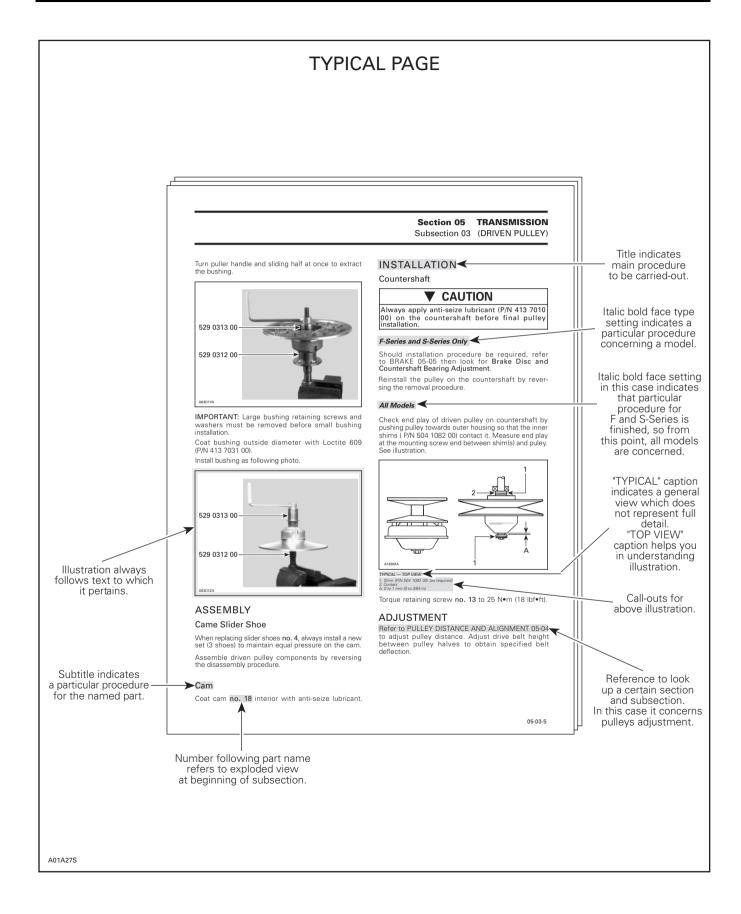
ENGINE SERIAL NUMBER

Engine Serial Number Location

^{1.} Engine serial number

ARRANGEMENT OF THE MANUAL


The manual is divided into 11 major sections: 01 SERVICE TOOLS AND SERVICE PRODUCTS 02 LUBRICATION AND MAINTENANCE 03 TROUBLESHOOTING 04 ENGINE 05 TRANSMISSION 06 ELECTRICAL 07 REAR SUSPENSION 08 STEERING/FRONT SUSPENSION 09 BODY/FRAME 10 TECHNICAL DATA 11 WIRING DIAGRAMS


Each section is divided in various subsections, and again, each subsection has one or more division.

LIST OF ABBREVIATIONS USED IN THIS MANUAL

А	ampere
amp	ampere
A∙h	ampere-hour
AC	alternate current
ACM	acceleration and control modulator
BDC	bottom dead center
BTDC	before top dead denter
°C	Celsius
CDI	capacitor discharge ignition
CTR	center
cm	centimeter
cm ²	square centimeter
cm ³	cubic centimeter
DC	direct current
DSA	direct shock action
°F	Fahrenheit
FC	fan cooled
fl. oz	fluid ounce
ft	foot
GRD	ground
H.A.C.	high altitude compensator
hal.	halogen
HI	high
imp. oz	imperial ounce
in	inch
in²	square inch
in ³	cubic inch
k	kilo (thousand)
kg	kilogram
km/h	kilometer per hour
kPa	Kilopascal
L	liter
lb	pound
lbf	pound (force)
lbf/in ²	pound per square inch

LH	left hand
LO	low
LT	long track
m	meter
MAG	magneto
Max.	maximum
Min.	minimum
mL	milliliter
mm	millimeter
MPH	mile per hour
N	newton
N.A.	not applicable
no.	number
00.0	continuity
0.L	open line (open circuit)
0.D.	outside diameter
OPT	optional
OZ	ounce
P/N	part number
PSI	pound per square inch
PTO	power take off
R	rectangular
RH	right hand
RAVE	rotax adjustable variable exhaust
RPM	revolution per minute
RMS	root mean square
RRIM	reinforced reaction injection molding
Sp. Gr.	specific gravity
ST	semi-trapez
TDC	top dead center
TRA	total range adjustable
U.S. oz	ounce (United States)
V	volt
Vac	volt (alternative current)

GENERAL INFORMATION

The information and component/system descriptions contained in this manual are correct at time of publication. Bombardier Inc. however, maintains a policy of continuous improvement of its products without imposing upon itself any obligation to install them on products previously manufactured.

Due to late changes, it may have some diferences between the manufactured product and the description and/or specifications in this document.

Bombardier Inc. reserves the right at any time to discontinue or change specifications, designs, features, models or equipment without incurring obligation.

USEFUL PUBLICATIONS

Refer to *Parts Catalogs* to order the right parts.

PARTS CATALOG			
MODELS	P/N		
FORMULA III 600 FORMULA III 600 R FORMULA 600 LT FORMULA III 700 FORMULA III 700 R	480 1455 00		
MACH 1 MACH 1 R	480 1456 00		
MACH Z MACH Z R MACH Z LT MACH Z LT R	480 1457 00		
GRAND TOURING 700 GRAND TOURING SE	480 1443 00		

Use *Specification Booklet* to find rapidly the right specs.

1995-1998 SPECIFICATION BOOKLET (P/N 484 0685 00).

ILLUSTRATIONS AND PROCEDURES

Illustrations and photos show the typical construction of the different assemblies and, in all cases, may not reproduce the full detail or exact shape of the parts shown. However, they represent parts which have the same or a similar function.

CAUTION

Most components of those vehicles are built with parts dimensioned in the metric system. Most fasteners are metric and must not be replaced by customary fasteners or vice versa. Mismatched or incorrect fasteners could cause damage to the vehicle or possible personal injury.

As many of the procedures in this manual are interrelated, we suggest, that before undertaking any task, you read and thoroughly understand the entire section or subsection in which the procedure is contained.

A number of procedures throughout the book require the use of special tools. Before commencing any procedure, be sure that you have on hand all the tools required, or approved equivalents. The use of RIGHT and LEFT indications in the text, always refers to driving position (when sitting on vehicle).

TYPICAL

1. Left 2. Right

TIGHTENING TORQUES

Tighten fasteners to torque mentioned in exploded views and text. When they are not specified refer to following table.

N•m	FASTENER SIZE (8.8)	Lbf•in
1		9
2	M4	18
3	M4	27
4	M5	35
5		44
6		53
7		62
8	M6	71
9	M6	80
10	M6	89
11	M6	97
12	M6	106
13		115
14		124
15		133
16		142
17		150
18		159
19		168
20		15
21	M8	15
22	M8	16
23	M8	17
24	M8	18
25	M8	18
26		19
27		20
28		21
29		21
30		22
31		23
32		24
33		24
34		25
35		26
36		27
37		27
38		28
39		29
40		30

41 42 43 44	M10 M10	30 31 32
43		
		<u>วา</u>
44	M10	JZ
		32
45	M10	33
46	M10	34
47	M10	35
48	M10	35
49	M10	36
50	M10	37
51	M10	38
52	M10	38
53	M10	39
54		40
55		41
56		41
57		42
58		43
59		44
60		44
61		45
62		46
63		46
64		47
65		48
66		49
67		49
68		50
69		51
70		52
71		52
72		53
73		54
74		55
75		55
76	M12	56
77	M12	57
78	M12	58
79	M12	58
80	M12	59
81	M12	60
82	M12	60
83	M12	61
84	M12	62
85		63

N•m	FASTENER SIZE (8.8)	Lbf•ft
86		63
87		64
88		65
89		66
90		66
91		67
92		68
93		69
94		69
95		70
96		71
97		72
98		72
99		73
100		74
101		74
102		75
103		76
104		77
105		77
106		78
107		79
108		80
109		80
110		81
111		82
112		83
112		83
114		84
115		85
116		86
117		86
118		87
119		88
120		89
120	M14	89
121	M14	90
122	M14	91
123	M14	91
124	M14	92
125	M14	93
120	M14	94
127	M14	94
128	M14	95
129	M14	96
150	1114	30

N•m	FASTENER SIZE (8.8)	Lbf•ft
131	M14	97
132	M14	97
133	M14	98
134	M14	99
135	M14	100
136	M14	100
137	M14	101
138	M14	102
139	M14	103
140	M14	103
141	M14	104
142	M14	105
143	M14	105
144	M14	106
145	M14	107
146	M14	108
147	M14	108
148	M14	109
149	M14	110
150	M14	111

TIGHTENING TORQUES FOR 8.8 GRADE BOLTS AND NUTS

We would be pleased if you could communicate to Bombardier any suggestions you may have concerning our publications.

Bombardier SERVICE PUBLICATIONS REPORT

Publication title and year		
Machine	_ Report of error 🗋	Suggestion 🗋
Name		
Address		
City and State/Prov		
Zip code/Postal code		
Bombardier SERVIC	CE PUBLICATION	
Publication title and year		
Machine		
Name		
Address		
City and State/Prov	D	ate
Zip code/Postal code		
Bombardier SERVIO		
Publication title and year		
Machine	_ Report of error []	Suggestion [
Name		
Address		
City and State/Prov.	D	ate
Zip code/Postal code		

AFFIX PROPER POSTAGE

Bombardier Inc.

Technical Publications After Sales Service Valcourt, (Quebec) Canada, JOE 2L0

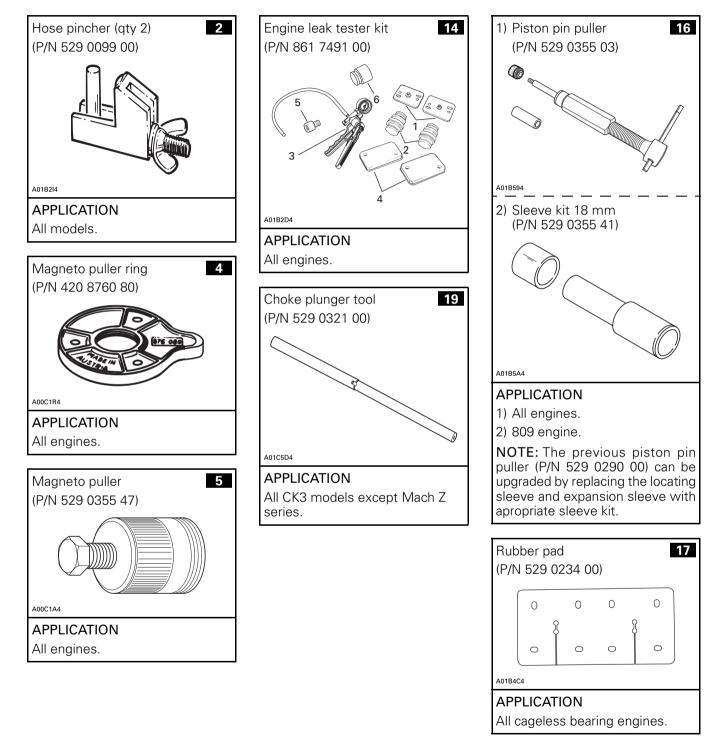
Bombardier Inc.

Technical Publications After Sales Service Valcourt, (Quebec) Canada, J0E 2L0

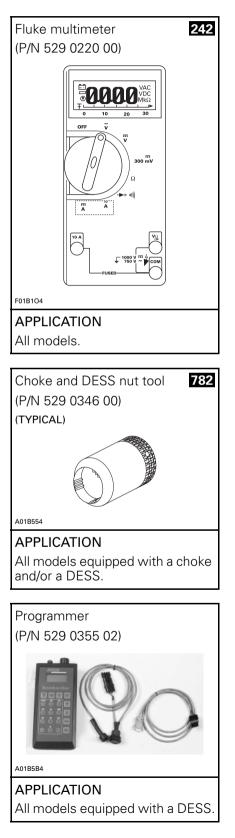
> AFFIX PROPER POSTAGE

Bombardier Inc.

Technical Publications After Sales Service Valcourt, (Quebec) Canada, JOE 2L0


SERVICE TOOLS

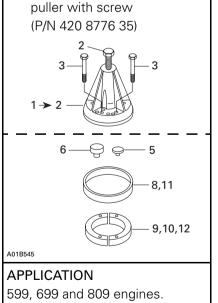
This is a list of tools to properly service Ski-Doo snowmobiles specified on cover page. The list includes both the mandatory tools and the optional tools which are ordered separately. The list of Service Products, both mandatory and optional, are not part of any kit and must all be ordered separately. If you need to replace or add to your tool inventory these items can be ordered through the regular parts channel.


NOTE: The numbers outlined in black (example: 1) are reference numbers to tools from other divisions (Sea-Doo Watercraft and/or Sea-Doo Jet Boats). Matching reference numbers indicate the same tool is being used even if the part numbers are different.

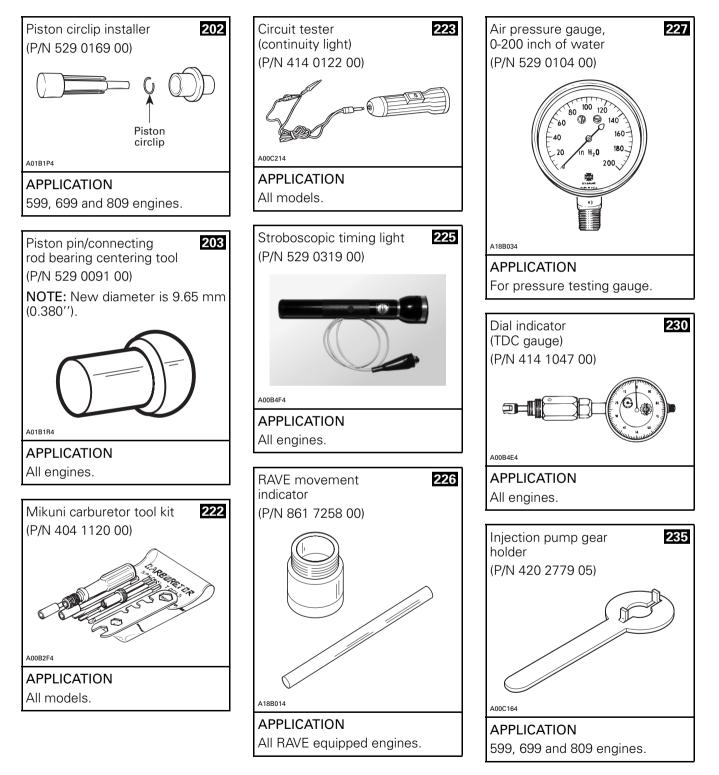
Subsection 01 (SERVICE TOOLS)

ENGINE — MANDATORY SERVICE TOOLS

ENGINE (continued) — MANDATORY SERVICE TOOLS

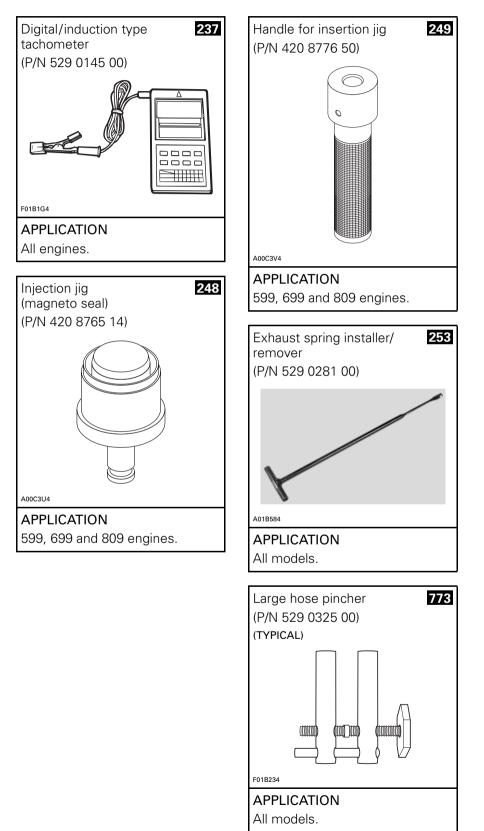


Subsection 01 (SERVICE TOOLS)

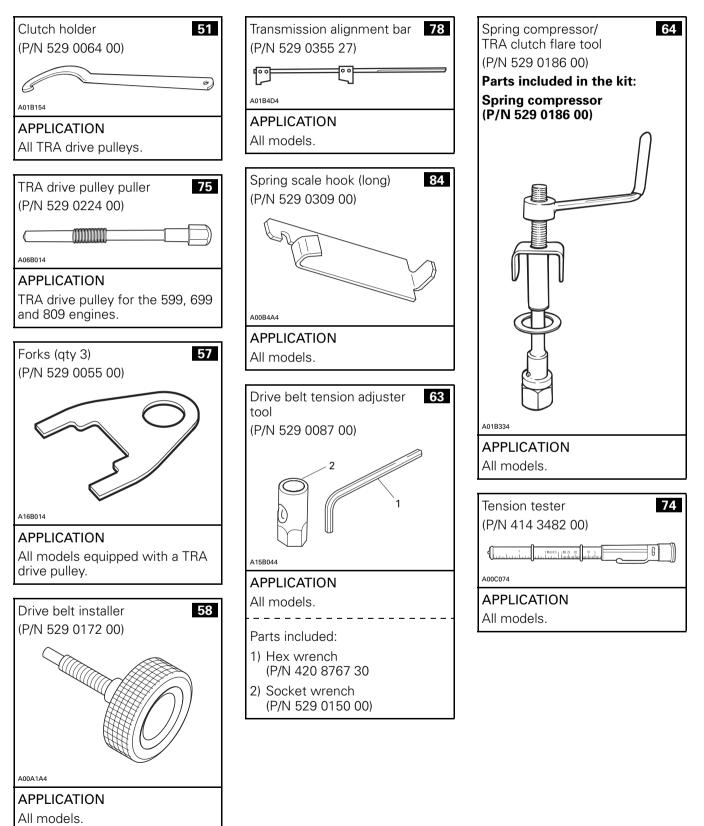

ENGINE (continued) — RECOMMENDED SERVICE TOOLS

The following tools are highly recommended to optimize your basic tool kit and reduce repair time.

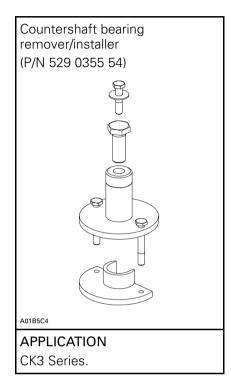
Bypass wires	2) Bolt (M16 x 1.5 x 150)	(P/N 420 9407 55)	258
(P/N 529 0333 00)	3) Screw M8 x 40 (qty 4)	(P/N 420 8406 81)	559
	5) Crankshaft protector PTO	(P/N 420 8765 52)	259
e 1	6) Crankshaft protector MAG	(P/N 420 8765 57)	554
N001094	8) Puller ring Use with half rings (P/N 420 9	(P/N 420 9774 90) 9774 75 or 420 2760 25).	555
APPLICATION Grand Touring 700/SE.	9) Half ring (2) For 72 mm O.D. bearings.	(P/N 420 9774 75)	556
Adaptor P/N 529 0338 00)	10) Half ring For 62 mm O.D. bearings.	(P/N 420 2760 25)	558
1 million	11) Puller ring For half rings (P/N 420 9774 7	(P/N 420 9774 94) 9).	251
0084H4	12) Half ring 80 mm O.D. bearings.	(P/N 420 9774 79)	252
APPLICATION	7		
Grand Touring SE.			



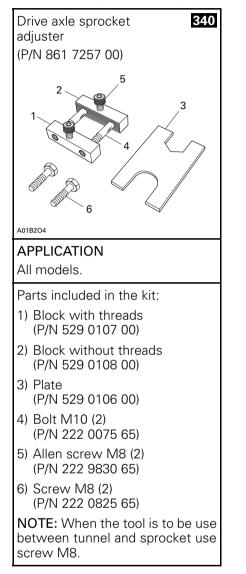
ENGINE (continued) — RECOMMENDED SERVICE TOOLS


Subsection 01 (SERVICE TOOLS)

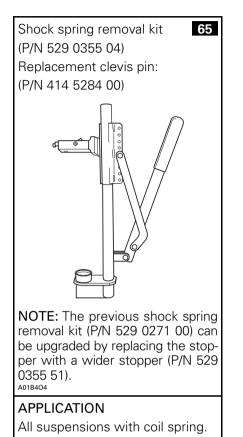
ENGINE (continued) — RECOMMENDED SERVICE TOOLS


Subsection 01 (SERVICE TOOLS)

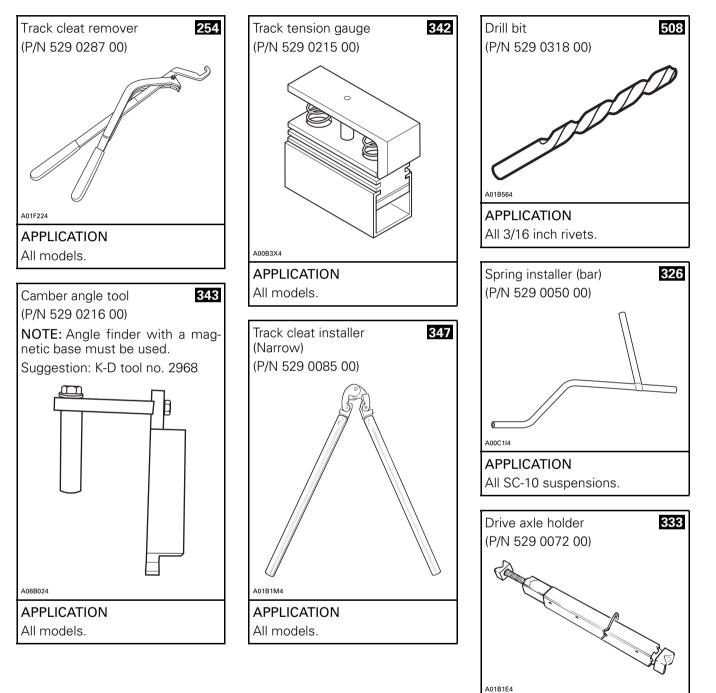
TRANSMISSION — MANDATORY SERVICE TOOLS


Subsection 01 (SERVICE TOOLS)

TRANSMISSION (continued) — MANDATORY SERVICE TOOLS

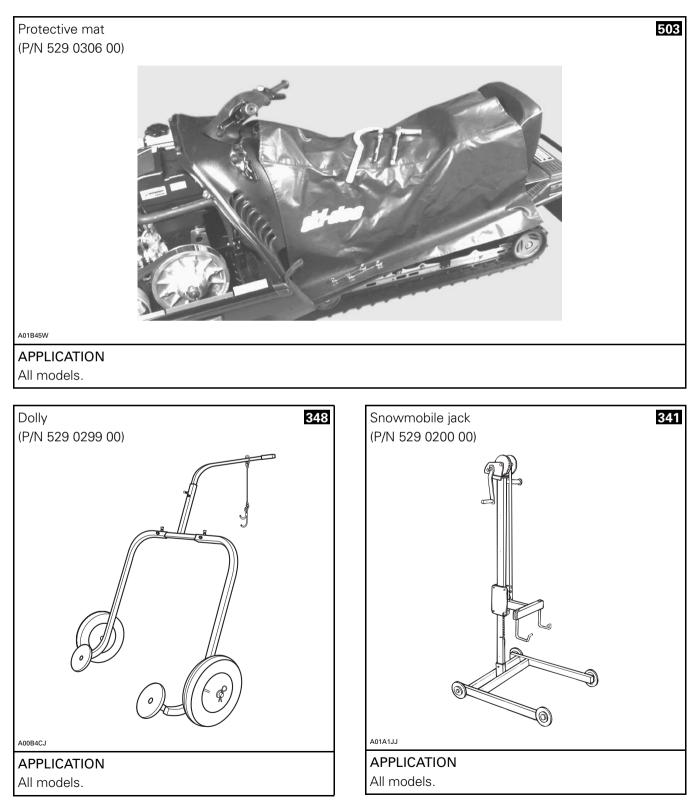

TRANSMISSION (continued) — RECOMMENDED SERVICE TOOLS

The following tools are highly recommended to optimize your basic tool kit and reduce repair time.



Subsection 01 (SERVICE TOOLS)

SUSPENSION — MANDATORY SERVICE TOOLS

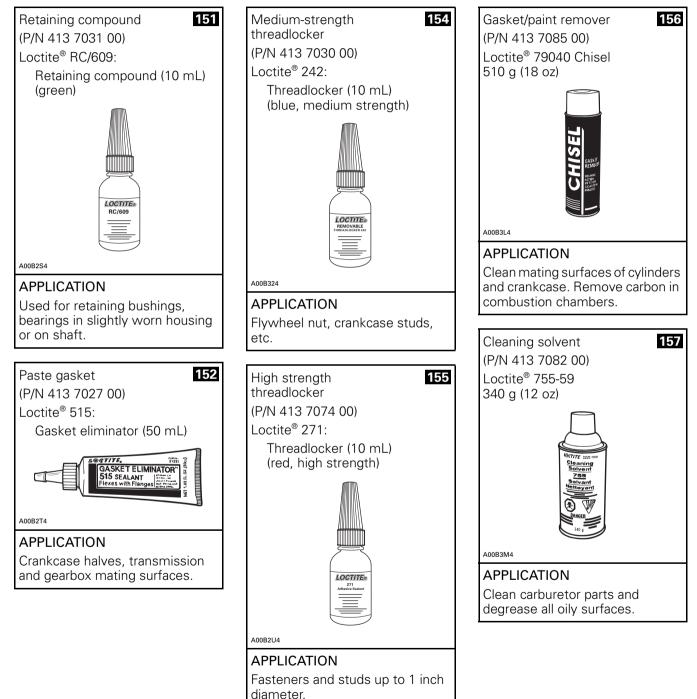

SUSPENSION (continued) — RECOMMENDED SERVICE TOOLS

APPLICATION All models.

Subsection 01 (SERVICE TOOLS)

VEHICLES — RECOMMENDED SERVICE TOOLS

SERVICE PRODUCTS


NOTE: The numbers outlined in black (example: **1**) are reference to tool numbers from other divisions (Sea-Doo Watercraft and/or Sea-Doo Jet Boats). Matching reference numbers indicate the same tool is being used, even if the part numbers are different.

Subsection 02 (SERVICE PRODUCTS)

MANDATORY SERVICE PRODUCTS

Loctite® is a trademarks of Loctite Corporation.

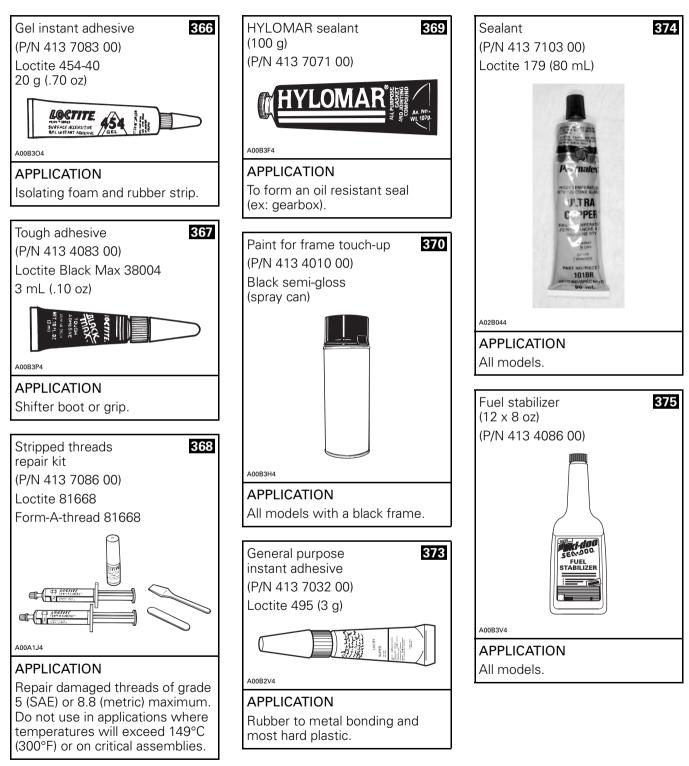
Dow Corning[®] is a trademarks of Dow Corning Corporation.



MANDATORY SERVICE PRODUCTS (continued)

Subsection 02 (SERVICE PRODUCTS)

RECOMMENDED SERVICE PRODUCTS


Subsection 02 (SERVICE PRODUCTS)

RECOMMENDED SERVICE PRODUCTS (continued)

Subsection 02 (SERVICE PRODUCTS)

RECOMMENDED SERVICE PRODUCTS (continued)

RECOMMENDED SERVICE PRODUCTS (continued)

Section 02 LUBRICATION AND MAINTENANCE Subsection 01 (LUBRICATION AND MAINTENANCE CHART)

LUBRICATION AND MAINTENANCE CHART

SYSTEM	PART/TASK	10-HOUR OR 500 km (300 mi) INSPECTION (To be performed by dealer)	WEEKLY OR EVERY 240 km (150 mi)	MONTHLY OR EVERY 800 km (500 mi)	ONCE A YEAR OR EVERY 3200 km (2000 mi)	STORAGE (To be performed by dealer)	PRE-SEASON PREPARATION (To be performed by dealer)	REFER TO
	Rewind Starter Lubrication and Rope Condition						~	Subsection 04-07
	Engine Head Nuts	~			~			Appropriate section: See Top End
	Engine Mount Nuts	~			~			Appropriate section: See ENGINE REMOVAL
	Exhaust System	~		~				Appropriate section: See ENGINE REMOVAL
	Engine Lubrication					>		This section no. 1
	Cooling System Condition	~			~			Subsection 04-06
	Coolant Replacement (except fan cooled)						~	Not applicable
	Condition of Seals						~	Subsection 04-02
	Injection Oil Filter Condition			~				Subsection 04-05
97	Injection Oil Filter Replacement						>	Subsection 04-05
	Oil Injection Pump Adjustment	~			~			Subsection 04-05
	Fuel Stabilizer					>		This section no. 2
	Fuel Filter Replacement						~	This section no. 3
	Fuel Lines and Connections	~					~	Subsection 04-09
A _	Carburetor Adjustment	~			~			Subsection 04-08
	Throttle Cable Inspection	~			~		>	Subsection 04-09
	Air Filter Cleaning			~				This section no. 4
	Drive Belt Condition	~	>					This section no. 5
	Condition of Drive and Driven Pulleys	~		~		~		Subsections 05-03 and 05-04
	Cleaning of Drive and Driven Pulleys						~	Subsections 05-03 and 05-04
	Retorquing of Drive Pulley Screw	~						Subsection 05-03
	Driven Pulley Preload	~			~			Subsection 05-04
	Brake Condition	~	>					Subsection 05-06
	Brake Adjustment			~				Subsection 05-06
	Brake Fluid Change						~	Subsection 05-06
	Drive Chain Tension	~		~				Subsections 05-07 and 05-08
(🎮)	Countershaft Lubrication	~		~		>		Subsection 05-06
	Chaincase/Gearbox Oil Level	~		~			>	Subsections 05-07 and 05-08
	Chaincase/Gearbox Oil Change					>		Subsections 05-07 and 05-08
	Lubrication of Drive Axle Bearing	✓		~		~		Subsection 07-03

Section 02 LUBRICATION AND MAINTENANCE

Subsection 01 (LUBRICATION AND MAINTENANCE CHART)

SYSTEM	PART/TASK	10-HOUR OR 500 km (300 mi) INSPECTION (To be performed by dealer)	WEEKLY OR EVERY 240 km (150 mi)	MONTHLY OR EVERY 800 km (500 mi)	ONCE A YEAR OR EVERY 3200 km (2000 mi)	STORAGE (To be performed by dealer)	PRE-SEASON PREPARATION (To be performed by dealer)	REFER TO
	Handlebar Bolts. Retorque to 26 N•m (19 lbf•ft)	~						Subsection 08-02
~~~~	Steering and Front Suspension Mechanism	~		~		~		Subsections 08-02 and 08-03
$\square$	Wear and Condition of Skis and Runners	~	>					Subsection 08-03
	Steering and Ski Leg Camber Adjustment	>		~				Subsection 08-02
	Suspension Adjustments	n Adjustments AS REQUIRED					Section 07-02 and <i>Operator's Guide</i>	
	Suspension Lubrication			~		~		Section 07-02
	Suspension Condition	~			~			Section 07-02
	Suspension Stopper Strap Condition				>			Section 07-02
	Track Condition	~		~				Subsection 07-04
	Track Tension and Alignment	~	AS REQUIRED				Subsection 07-04	
	Spark Plugs*	~		~				Subsection 06-03
	Engine Timing	~					>	Subsection 06-02
	Battery Condition	~		~		~		Subsection 06-04
	Headlight Beam Aiming				~			Subsection 09-02
7	Wiring Harnesses, Cables and Lines	~		~				Subsection 09-02
	Operation of Lighting System (HI/LO beam, brake light, etc.) Test Operation of Emergency Cut-Out Switch and Tether Cut-Out Switch	2	~			>		Operator's Guide
-	Rags in Air Intake and Exhaust System					~	~	This section no. 6
	Engine Compartment	~		~				This section no. 7
	Vehicle Cleaning and Protection	~		~		>		This section no. 8

* Before installing new spark plugs at pre-season preparation, it is suggested to burn excess storage oil by starting the engine with the old spark plugs. Only perform this operation in a well-ventilated area.

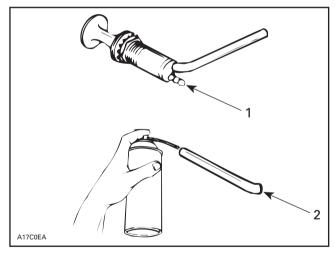
## NO. 1 ENGINE LUBRICATION

Engine internal parts must be lubricated to protect them from possible rust formation during the storage period.

Proceed as follows:

Start the engine and allow it to run at idle speed until the engine reaches its operating temperature.

## WARNING


Ensure the track is free of all particles which could be thrown out while it is rotating. Keep hands, tools, feet and clothing clear of track. Ensure no one is standing in close proximity to the vehicle.

Stop the engine.

#### Models with a Primer

To prevent fuel from draining, primer button should be pushed all the way in.

Disconnect the outlet primer hose from the primer valve (straight coupling).



Straight coupling
 To intake manifold

Insert storage oil (P/N 496 0141 00) nozzle into primer outlet hose.

#### Models with a Choke

Remove air silencer to spray storage oil into each carburetor bore.

#### All Models

Restart engine and run at idle speed.

Inject storage oil until the engine stalls or until a sufficient quantity of oil has entered the engine (approximately half a can).

With the engine stopped, remove the spark plug and spray storage oil (P/N 496 0141 00) into each cylinder.

Crank slowly 2 or 3 revolutions to lubricate cylinders.

Reinstall the spark plugs and the outlet primer hose or air silencer.

### WARNING

This procedure must only be performed in a well-ventilated area. Do not run engine during storage period.

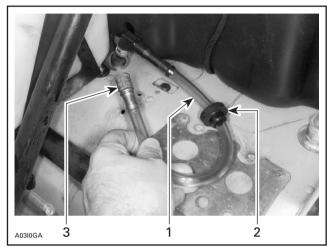
## NO. 2 FUEL STABILIZER

A fuel stabilizer (P/N 413 4086 00) can be added in fuel tank to prevent fuel deterioration and avoid draining fuel system for storage. Follow manufacturer's instructions for proper use.

If above fuel stabilizer is not used, drain fuel system including fuel tank and carburetor(s).



Fuel stabilizer should be added prior engine lubrication to ensure carburetor(s) protection against varnish deposit.


## Section 02 LUBRICATION AND MAINTENANCE

Subsection 01 (LUBRICATION AND MAINTENANCE CHART)

### NO. 3 FUEL FILTER REPLACEMENT

Drain fuel tank.

Remove fuel line grommet from fuel tank and pull out inlet fuel line from tank.



TYPICAL

- 1. Inlet fuel line
- Position of grommet when installing
   Fuel filter

Replace fuel filter. To facilitate the fuel line installation, slide grommet on fuel line about 50 mm (2 in) away from elbow then install grommet on fuel tank and push elbow through grommet.

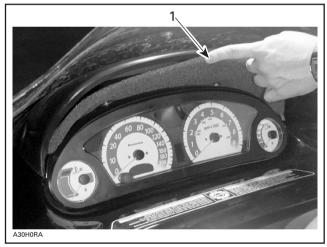
## NO. 4 AIR FILTER CLEANING

## CAUTION

These snowmobiles have been calibrated with the filter installed. Operating the snowmobile without it may cause engine damage.

Remove air filter from air deflector by pulling it.

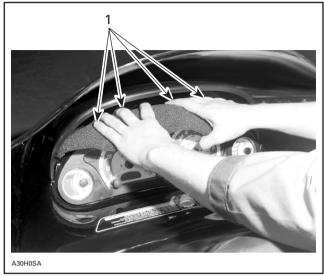
Lift hood and remove air filter from air intake silencer.


To clean the filter, shake the snow out of it then, dry it out.

Check that the air box is clean and dry then properly reinstall the filter.



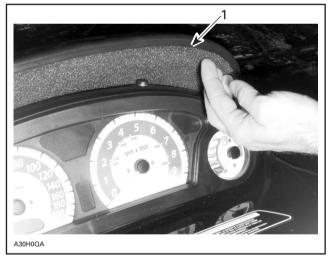
AIR FILTER INSTALLED


Insert air filter so its top edge is flush with air deflector.



TYPICAL

1. Top edge of filter flush with air deflector


Reinstall filter over dashboard sticking bottom edge first.



TYPICAL

1. Stick bottom edge first

Finalize filter top edge installation.



**TYPICAL** Push top edge of filter under air deflector lip



## NO. 5 DRIVE BELT CONDITION

Inspect belt for cracks, fraying or abnormal wear (uneven wear, wear on one side, missing cogs, cracked fabric). If abnormal wear is noted, probable cause could be pulley misalignment, excessive RPM with frozen track, fast starts without warm-up period, burred or rusty sheave, oil on belt or distorted spare belt.

Check the drive belt width. Replace the drive belt if width is less than the minimum width recommended. Refer to DRIVE BELT 05-02.

# NO. 6 RAGS IN AIR INTAKE AND EXHAUST SYSTEM

At storage preparation, block air intake hole and exhaust system hole using clean rags.

Remove those rags at pre-season preparation.

## NO. 7 ENGINE COMPARTMENT

Keep clean of grass, twigs, cloth, etc. These are combustible under certain conditions.

# NO. 8 VEHICLE CLEANING AND PROTECTION

Remove any dirt or rust.

To clean the entire vehicle, use only flannel clothes or Kimtowels® wipers no. 58-380 from Kimberly-Clark.

## CAUTION

It is necessary to use flannel cloths or Kimtowels wipers on windshield and hood to avoid damaging further surfaces to clean.

To clean the entire vehicle, including metallic parts with a **thick** coat of grease, use Endust[®] imported by Bristol Myers, available at hardware stores or supermarkets.

For bottom pan cleaning, use Bombardier Cleaner (P/N 293 1100 01 (spray can 400 g) and 293 1100 02 (4 L)).

## CAUTION

Do not use Bombardier Cleaner on decals or vinyl.

To clean the entire vehicle, including metallic parts with a **thin** coat of grease, use Simple Green[®] from Sunshine Makers Inc., available at hardware stores or at automotive parts retailer.

For vinyl and plastic parts, use Vinyl & Plastic Cleaner (P/N 413 7112 00 (6 x 1L)).

To remove scratches on windshield or hood: Start with "Slip Streamer Motorcycle Windshield Heavy Duty Scratch, Remover". Finish with "Slip Streamer Motorcycle Cleaner and Polish". **NOTE:** The latest product may be use alone if only light scratches are noticeable.

## CAUTION

Never clean plastic parts or hood with strong detergent, degreasing agent, paint thinner, acetone, products containing chlorine, etc.

Inspect the hood and repair any damage. Touch up all metal spots where paint has been scratched off. Spray all metal parts including shock chromed rods with BOMBARDIER LUBE (P/N 293 6000 16). Wax the hood and the painted portion of the frame for better protection.

**NOTE:** Apply wax on glossy finish only. Protect the vehicle with a cover to prevent dust accumulation during storage.

## CAUTION

The snowmobile has to be stored in a cool and dry place and covered with an opaque tarpaulin. This will prevent sun rays and grime from affecting plastic components and vehicle finish.

Lift rear of vehicle until track is clear of the ground. Install on a snowmobile mechanical stand.

**NOTE:** Do not release track tension.

## **TABLE OF CONTENTS**

ENGINE	03-02-1
ENGINE LEAK VERIFICATION FLOW CHART	03-02-11
FUEL AND OIL SYSTEMS	03-03-1
TRANSMISSION AND BRAKE SYSTEMS	03-04-1
TRANSMISSION	03-04-1
BRAKE SYSTEM	03-04-7
HYDRAULIC BRAKE	03-04-7
ELECTRICAL SYSTEM	03-05-1
SUSPENSION AND TRACK	03-06-1

## ENGINE

The following chart is provided to help in diagnosing the probable source of troubles. It should be used as a guideline. Some causes or corrections may not apply to a specific model.

SYMPTOM	ENGINE BACKFIRES.
CONDITION	NORMAL USE.
Test/Inspection	1. Check spark plugs.
	a. Carbon accumulation caused by defective spark plug(s). Clean carbon accumulation and replace spark plugs.
	2. Check cooling system.
	a. Loose fan belt. Adjust or replace fan belt (refer to TECHNICAL DATA 10).
	b. Low antifreeze level. Adjust antifreeze level. Then check clamps or hoses.
	c. Defective tank cap. <i>Replace cap.</i>
	d. Air in system. Bleed system.
	3. Check ignition timing.
	a. Timing is too advanced. Set timing according to specifications (refer to TECHNICAL DATA 10).

SYMPTOM	ENGINE SUDDENLY TURNS OFF AT HIGH RPM AND/OR WITH LIGHT LOAD.
CONDITION	NORMAL USE.
Test/Inspection	1. Check that all 3 ground wires are well connected.

SYMPTOM	ENGINE SUDDENLY TURNS OFF.
CONDITION	NORMAL USE.
Test/Inspection	1. Perform engine leak test. Refer to ENGINE LEAK VERIFICATION FLOW CHART. Check possible piston seizure.
	a. Damaged gasket and/or seal. Replace defective parts.
	2. "Four-corner" seizure of piston(s).
	a. Accelerating too fast when engine is cold. Piston expands faster than cylinder. <i>Replace piston(s). Ask driver to refer to warm-up procedure in</i> Operator's Guide.
	3. Piston(s) seizure on exhaust side (color on piston dome is correct).
	a. Kinked fuel tank vent tube. Relocate fuel tank vent tube.
	b. Leaks at fuel line connections or damaged fuel lines. <i>Replace defective lines.</i>
	<ul> <li>Fuel does not flow through carburetor(s) (plastic particles in needle area and/or varnish formation in carburetor(s)).</li> <li>Clean carburetor(s).</li> </ul>
	d. Spark plug heat range is too warm. Install spark plugs with appropriate heat range (refer to TECHNICAL DATA 10).
	e. Improper ignition timing. Adjust according to specifications (refer to TECHNICAL DATA 10).
	f. Restriction in exhaust system. <i>Replace.</i>
	g. Compression ratio is too high. Install genuine parts.
	h. Carburetor calibration is too lean. Adjust according to specifications (refer to TECHNICAL DATA 10).
	<ul> <li>Improper rotary valve timing or improper valve. Adjust according to specifications (refer to TECHNICAL DATA 10) and/or install Bombardier's recommended rotary valve.</li> </ul>
	j. Poor quality oil. Use BOMBARDIER-ROTAX oil.
	k. Leaks at air intake silencer. Replace air intake silencer grommets.
	4. Melted and/or perforated piston dome; melted section at ring end gap.
	a. When piston reaches TDC, mixture is ignited by heated areas in combustion chamber. This situation is due to an incomplete combustion of a poor quality oil. <i>Clean residue accumulation in combustion chamber and replace piston(s). Use</i> <i>Bombardier-Rotax injection oil.</i>
	b. Spark plug heat range is too high. Install recommended spark plugs (refer to TECHNICAL DATA 10).
	c. Ignition timing is too advanced. Adjust according to specifications (refer to TECHNICAL DATA 10).
	d. Inadequate fuel quality. Use appropriate fuel.
	e. Carburetion is too lean. Adjust according to specifications (refer to TECHNICAL DATA 10).

5. Seized piston all around the circumference (dry surface).
a. Lack of oil, damaged oil line or defective injection pump. <i>Replace defective part(s).</i>
6. Grooves on intake side of piston only.
a. Oil film eliminated by water (snow infiltration in engine). <i>Replace piston(s) and check if intake system leaks.</i>
7. Piston color is dark due to seizure on intake and exhaust sides.
a. Broken or loose fan belt. Replace fan belt or adjust its tension (refer to TECHNICAL DATA 10).
b. Cooling system leaks and lowers coolant level. Tighten clamps or replace defective parts. Add antifreeze in cooling system until appropriate level is reached.
c. Accumulation of foreign particles in needle and/or main jet area. <i>Clean carburetor(s).</i>
8. Cracked or broken piston(s).
<ul> <li>a. Cracked or broken piston(s) due to excessive piston/cylinder clearance or engine overreving.</li> <li>Replace piston(s). Check piston/cylinder clearance (refer to TECHNICAL DATA 10).</li> <li>Adjust drive pulley according to specifications (refer to TECHNICAL DATA 10) and/or clean pulley sheaves if they are contaminated with greasy particles.</li> </ul>

SYMPTOM	PISTON RING AND CYLINDER SURFACES ARE GROOVED.	
CONDITION	NORMAL USE.	
Test/Inspection	<ol> <li>Check oil quality.</li> <li>a. Poor oil quality. Use BOMBARDIER-ROTAX injection oil.</li> </ol>	
	<ul> <li>2. Check injection pump and its hoses.</li> <li>a. Inadequate injection pump adjustment and/or defective hoses.</li> <li>Adjust pump according to specifications (refer to ENGINE 04) and/or replace hoses.</li> </ul>	

SYMPTOM	ENGINE DOES NOT OFFER MAXIMUM POWER AND/OR DOES NOT REACH MAXIMUM OPERATING RPM.
CONDITION	NORMAL USE.
Test/Inspection	1. Check spark plug condition.
	a. Fouled spark plugs. <i>Replace.</i>
	2. Check if there is water in fuel.
	a. There is water in fuel. Drain fuel system, then fill it with appropriate fuel.
	3. Check items listed in ENGINE RUNS OUT OF FUEL (refer to fuel and oil system subsection 03).
	4. Check carburetor adjustments and cleanliness.
	a. Inadequate carburetor adjustments or dirt accumulation. Adjust according to specifications (refer to TECHNICAL DATA 10) or clean.
	5. Check drive belt.
	a. Worn belt. Replace belt if width is 3 mm (1/8″) less than nominal dimension (refer to TECHNICAL DATA 10).
	6. Check track adjustment.
	a. Too much tension and/or improper alignment. Align track and adjust its tension to specifications (refer to TECHNICAL DATA 10).
	7. Check drive pulley.
	<ul> <li>a. Improper calibration screw adjustments (TRA pulley) and/or worn bushing(s). Adjust according to specifications (refer to TECHNICAL DATA 10) and/or replace bushing(s).</li> </ul>
	8. Check driven pulley.
	a. Worn bushing and/or spring tension. Replace spring and/or adjust its tension according to specifications (refer to TECHNICAL DATA 10).
	9. Check exhaust system.
	a. Restriction. <i>Replace.</i>
	10. Check ignition timing.
	a. Decrease in power due to retarded ignition. Adjust according to specifications (refer to TECHNICAL DATA 10).
	11. Check engine compression.
	a. Worn piston(s) and ring(s). Replace (refer to TECHNICAL DATA 10 for specifications).
	12. Check engine cooling system.
	a. Engine overheats. Improper fan belt tension. Adjust fan belt (refer to TECHNICAL DATA 10).
	b. Antifreeze level is low, cap fails to pressurize system or air circulates through lines. Adjust level, replace cap or bleed cooling system.

SYMPTOM	ENGINE DETONATION AT MAXIMUM RPM.
CONDITION	NORMAL USE.
Test/Inspection	1. Check which type of fuel is used.
	a. Octane number is too low and/or alcohol level is too high. Use recommended fuel type.
	2. Check spark plug type.
	a. Improper spark plug heat range. Install recommended spark plugs (refer to TECHNICAL DATA 10).
	3. Check exhaust system.
	a. Too much restriction. <i>Replace.</i>
	4. Check ignition timing.
	a. Timing is too advanced. Adjust according to specifications (refer to TECHNICAL DATA 10).
	5. Check carburetion.
	a. Fouled and/or improper carburetor components. Clean or replace according to specifications (refer to TECHNICAL DATA 10).
	6. Check compression ratio and combustion chamber volume.
	a. Compression ratio is too high. Install genuine parts.

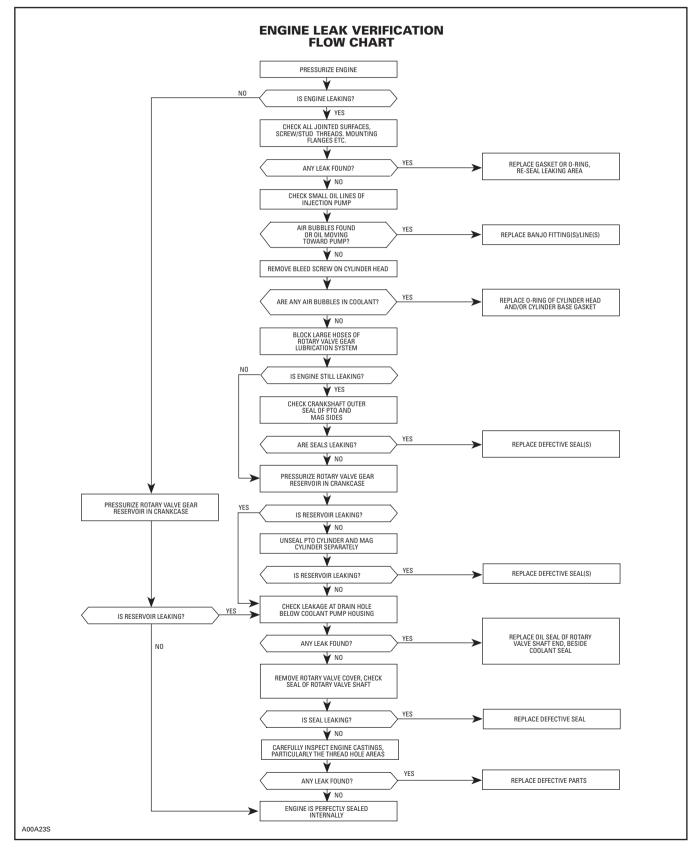
SYMPTOM	ENGINE TURNS OVER BUT FAILS TO START.
CONDITION	NORMAL USE.
Test/Inspection	1. Check switches.
	a. Ignition switch, emergency cut-out switch or tether switch is in the OFF position Place all switches in the RUN or ON position. If it still does not work, connect DESS switch BK/GN and BK/WH wires together (harness side).
	2. Check fuel level.
	a. Mixture not rich enough to start cold engine. Check fuel tank level and use primer.
	3. Check spark plug.
	a. Defective spark plug (no spark). <i>Replace spark plugs.</i>
	4. Check amount of fuel on spark plug.
	a. Flooded engine (spark plug wet when removed). Do not overprime or overchoke. Remove wet spark plugs, turn ignition switch to OFF and crank engine several times. Install clean dry spark plugs. Start engine following usual starting procedure.
	5. Check fuel lines.
	a. No fuel to the engine (spark plugs dry when removed). Check fuel tank level; turn fuel valve on if applicable; check fuel filter, replace if clogged; check condition of fuel and impulse lines and their connections.
	6. Check engine compression.
	a. Insufficient engine compression. Replace defective part(s) (ex.: piston(s), ring(s), etc.).

SYMPTOM	IRREGULAR ENGINE IDLE.
CONDITION	NORMAL USE AFTER ENGINE WARM UP.
Test/Inspection	<ol> <li>Check primer.</li> <li>a. Fuel leaks at primer nipple which is mounted to carburetor. Replace.</li> </ol>
	<ul> <li>2. Check choke.</li> <li>a. Choke plunger may be partially opened.</li> <li><i>Readjust.</i></li> </ul>
	<ul> <li>3. Check carburetor adapter.</li> <li>a. Air enters through a crack. <i>Replace.</i></li> </ul>
	<ul> <li>4. Check air screw position.</li> <li>a. Inadequate fuel/air mixture. Adjust according to specifications (refer to TECHNICAL DATA 10).</li> </ul>
	<ul> <li>5. Check ignition system trigger coil air gap.</li> <li>a. Air gap is too large. Adjust according to specifications (refer to TECHNICAL DATA 10).</li> </ul>
	<ul> <li>6. Check dimension of pilot jet.</li> <li>a. Inadequate fuel/air mixture. Adjust according to specifications (refer to TECHNICAL DATA 10).</li> </ul>
	<ul> <li>7. Perform engine leak test.</li> <li>a. Leaking gaskets allow air to enter in engine.</li> <li><i>Replace defective parts.</i></li> </ul>

SYMPTOM	HIGH ENGINE OPERATING TEMPERATURE.
CONDITION	NORMAL USE.
Test/Inspection	1. Check temperature gauge sensor.
	a. False reading. Check terminal connections. If problem still persists, replace sensor.
	2. Check fan belt.
	a. Belt slides because it is too loose. Adjust according to specifications (refer to TECHNICAL DATA 10).
	3. Verify antifreeze level and check if there is air infiltration in the system or if there are leaks in gasket areas.
	<ul> <li>Low antifreeze level or air in system.</li> <li>Add antifreeze until recommended level is reached, bleed system and/or tighten clamps at fitting.</li> </ul>
	4. Check if antifreeze flows through system properly.
	a. Foreign particles and/or broken coolant pump impeller. Clean cooling system and/or replace coolant pump impeller.
	5. Check thermostat.
	a. Thermostat reacts slowly or not at all. <i>Replace.</i>
	6. Check antifreeze concentration.
	a. Antifreeze concentration is too high. Adjust concentration according to Bombardier's recommendations.
	7. Check tank cap.
	a. Cap does not hold pressure. <i>Replace.</i>
	8. Check carburetion.
	a. Improperly adjusted or inadequate carburetor components. Adjust according to specifications (refer to TECHNICAL DATA 10) or replace inadequate component(s).
	9. Check cylinder head gaskets.
	a. Worn gaskets. <i>Replace.</i>
	10. Check ignition timing.
	a. Ignition timing is too advanced. Adjust according to specifications (refer to TECHNICAL DATA 10).
	11. Check if there are leaks at air intake silencer and/or engine crankcase.
	a. Leak(s). Repair or replace.
	12. Check condition and heat range of spark plugs.
	a. Melted spark plug tip or inadequate heat range. <i>Replace.</i>

SYMPTOM ENGINE EQUIPPED WITH RAVE VALVE DOES NOT REACH ITS FULL **OPERATING RPM (500 TO 1000 RPM SLOWER).** CONDITION NORMAL USE. **Test/Inspection** 1. Check RAVE valve pistons. a. Valve piston(s) is (are) too far out. Screw valve piston(s) to bottom. 2. Check RAVE valve stems. a. Bent RAVE valve stem(s). Replace. 3. Check RAVE valves. a. Jammed valve(s). Clean. 4. Check tension of RAVE springs. a. Inadequate spring tension. Replace. 5. Check RAVE pressure holes. a. Clogged holes. Clean. 6. Check clamps or sleeves. a. Damaged clamp(s) or sleeve(s). Replace.

SYMPTOM	ENGINE EQUIPPED WITH RAVE. ENGINE HESITATES AT MID-SPEED AND REACHES MAXIMUM PERFORMANCE ONLY AFTER A WHILE.
CONDITION	NORMAL USE.
Test/Inspection	1. Check RAVE valve spring(s).
	a. Spring tension is too weak or spring(s) is (are) broken. <i>Replace.</i>
	2. Check RAVE valve cover red adjustment screws.
	a. Adjustment screw(s) is (are) too loose. Adjust according to specifications.
	3. Check RAVE valve movement (RAVE movement indicator P/N 861 7258 00).
	a. Valve(s) is (are) stuck in open position. <i>Clean.</i>


SYMPTOM	REWIND STARTER ROPE DOES NOT REWIND.
CONDITION	NORMAL USE.
Test/Inspection	1. Check rewind spring.
	a. Broken spring. <i>Replace spring.</i>

SYMPTOM	REWIND STARTER PAWL DOES NOT ENGAGE.
CONDITION	NORMAL USE.
Test/Inspection	1. Check stopper spring.
	a. Broken stopper spring. <i>Replace.</i>
	2. Check pawl and pawl lock.
	a. Pawl and pawl lock have stuck together because of heat. <i>Replace.</i>
	3. Check pawl and rope sheave.
	a. Pawl and rope sheave have stuck together because of heat. <i>Replace.</i>

SYMPTOM	ENGINE PINGING.
CONDITION	NORMAL USE.
Test/Inspection	1. Check fuel lines.
	a. Bent fuel lines (preventing fuel from flowing through). <i>Relocate or replace fuel lines.</i>
	2. Check if carburetor(s) is (are) clean.
	a. Dirt prevents fuel from flowing through. <i>Clean.</i>
	3. Check ignition timing.
	a. Timing is too advanced. Adjust according to specifications (refer to TECHNICAL DATA 10).
	4. Check compression ratio.
	a. Compression ratio is too high. Replace inadequate part(s) to obtain manufacturer's recommended compression ratio or use a higher grade fuel.

SYMPTOM	ENGINE GENERATES A LOT OF VIBRATIONS.
CONDITION	NORMAL USE.
Test/Inspection	1. Check engine supports.
	a. Loose and/or broken supports or interference between support(s) and chassis. Retighten to specification (refer to TECHNICAL DATA 10) or replace.
	2. Check drive pulley (refer to: vibrations coming from drive pulley).
	3. Check carburetor synchronization.
	<ul> <li>a. Throttle slide heights are adjusted differently and/or throttle slide openings are unsynchronized.</li> <li>Adjust throttle slide heights and throttle cable.</li> </ul>

## ENGINE LEAK VERIFICATION FLOW CHART



## **FUEL AND OIL SYSTEMS**

The following chart is provided to help in diagnosing the probable source of troubles. It should be used as a guideline. Some causes or corrections may not apply to a specific model.

SYMPTOM	HIGH FUEL CONSUMPTION OR RICH MIXTURE.
CONDITION	NORMAL USE.
Test/Inspection	1. Check fuel tank. a. Perforated fuel tank. <i>Replace fuel tank.</i>
	<ul> <li>2. Check fuel pump reservoir and carburetor fittings.</li> <li>a. Leaking fittings. Replace defective part.</li> </ul>
	<ul> <li>3. Check primer.</li> <li>a. Fuel flows through primer while engine runs. Replace primer.</li> </ul>
	<ul> <li>4. Check float height in carburetor(s).</li> <li>a. Fuel level is too high in float bowl(s). Adjust according to specifications (refer to TECHNICAL DATA 10).</li> </ul>
	<ul> <li>5. Check needle valve.</li> <li>a. Foreign particles prevent needle valve(s) from closing and/or worn seating area. Clean or replace needle valve(s), then clean seating area.</li> </ul>

SYMPTOM	FUEL LEAKS IN ENGINE BASE WHEN ENGINE IS STOPPED.
CONDITION	NORMAL USE.
Test/Inspection	1. Check items 3, 4 and 5 of HIGH FUEL CONSUMPTION.
	2. Check fuel pump diaphragm.
	a. Cracked diaphragm. <i>Replace.</i>

Subsection 03 (FUEL AND OIL SYSTEMS)

SYMPTOM	ENGINE LACKS POWER OR STALLS AT HIGH RPM.
CONDITION	NORMAL USE.
Test/Inspection	1. Check fuel tank vent hose.
	a. Kinked or clogged hose. <i>Relocate or replace.</i>
	2. Check fuel filter.
	a. Clogged filter. <i>Replace.</i>
	3. Check fuel lines.
	a. Kinked or clogged lines. <i>Relocate or replace.</i>
	4. Check fuel pump flow.
	a. Dried diaphragm. <i>Replace.</i>
	5. Check if carburetor(s) is (are) clean.
	a. Varnish. <i>Clean.</i>

SYMPTOM	HIGH INJECTION OIL CONSUMPTION.
CONDITION	NORMAL USE.
Test/Inspection	1. Check oil injection pump adjustment.
	a. Oil injection pump adjusted too rich. <i>Adjust.</i>
	2. Check injection oil lines and their fitting.
	a. Leaking lines and/or cover. Replace defective part(s).
	3. Check injection pump cover gasket.
	a. Worn gasket. <i>Replace.</i>
	4. Pressurize crankcase rotary valve gear reservoir.
	a. Leaking gasket(s). Replace gasket(s).

Subsection 03 (FUEL AND OIL SYSTEMS)

SYMPTOM	ENGINE RUNS OUT OF FUEL (OR LEAN MIXTURE).
CONDITION	NORMAL USE.
Test/Inspection	1. Check if lines are perforated or kinked and make sure they do not leak at fittings.
	a. Lines are too big for their fittings or are improperly routed. <i>Replace or properly relocate lines.</i>
	2. Check fuel pump outlet flow.
	a. Dirt clogging fuel pump lines or torn membrane. <i>Clean or replace fuel pump.</i>
	3. Check carburetor needle valve(s).
	a. Dirt (varnish, foreign particle) clogging fuel line inlets. <i>Clean.</i>
	4. Check main jet.
	a. Dirt (varnish, foreign particle) accumulation at main jet. <i>Clean.</i>
	5. Check float height in carburetor bowl(s).
	a. Running out of fuel at high speed because float height is too low. Adjust float lever height according to specifications.

## **TRANSMISSION AND BRAKE SYSTEMS**

The following charts are provided to help in diagnosing the probable source of troubles. It should be used as a guideline. Some causes or corrections may not apply to a specific model.

#### TRANSMISSION

SYMPTOM	THE SNOWMOBILE ACCELERATES SLOWLY, ESPECIALLY WHEN IT IS STOPPED.
CONDITION	NORMAL USE.
Test/Inspection	1. Check drive belt condition.
	a. Belt is too narrow (drive belt engagement is higher in drive pulley). Replace belt if width is 3 mm (1/8") less than a new one (refer to TECHNICAL DATA 10).
	2. Check distance between pulleys and/or drive belt deflection.
	<ul> <li>a. Distance is too small between pulleys or deflection is too high (drive belt engagement is higher in drive pulley).</li> <li>Adjust distance between pulleys and/or drive belt deflection according to specifications (refer to TECHNICAL DATA 10).</li> </ul>
	3. Check driven pulley sliding half play.
	a. Jammed sliding half. <i>Replace.</i>
	4. Check spring tension of driven pulley sliding half.
	a. Sliding half rotation is accelerated when spring tension is too weak. Adjust according to specifications (refer to TECHNICAL DATA 10).
	5. Refer to VIBRATIONS ORIGINATING FROM DRIVEN PULLEY and check items listed.
	6. Check drive pulley spring tension.
	a. Spring tension is too weak. <i>Replace.</i>

SYMPTOM	ENGINE MAXIMUM RPM IS TOO HIGH AND TOP SPEED IS NOT REACHED.
CONDITION	NORMAL USE.
Test/Inspection	1. Check items 1, 2 and 3 of THE SNOWMOBILE ACCELERATES SLOWLY, ESPECIALLY WHEN IT IS STOPPED.
	2. Check driven pulley spring tension.
	a. Spring tension is too stiff. Adjust according to specifications (refer to TECHNICAL DATA 10).
	3. Check position of the calibration screws. (TRA drive pulley)
	a. Selected numbers are too high. Adjust according to specifications (refer to TECHNICAL DATA 10).
	4. Refer to VIBRATIONS ORIGINATING FROM DRIVEN PULLEY and check items listed.

SYMPTOM	LOOSENESS IS FELT IN DRIVE SYSTEM WHEN ACCELERATING/DECELERATING.
CONDITION	NORMAL USE.
Test/Inspection	<ol> <li>Check drive chain tension.</li> <li>a. Drive chain is too loose. Adjust.</li> </ol>
	<ul> <li>2. Check play of driven pulley splines.</li> <li>a. Worn splines.</li> <li><i>Replace.</i></li> </ul>

SYMPTOM	VIBRATIONS ORIGINATING FROM DRIVE PULLEY.
CONDITION	NORMAL USE.
Test/Inspection	1. Check drive belt.
	a. Belt width is uneven at many places. Replace (refer to TECHNICAL DATA 10 for the part number).
	2. Check tightening torque of drive pulley screw.
	a. Moving governor cup. <i>Retighten screw.</i>
	3. Spring cover screws.
	a. Spring cover moves and restrains sliding half movement. <i>Retighten screws.</i>
	4. Check spring cover (TRA TYPE) and/or outer half bushings.
	<ul> <li>Excessive gap between bushings and inner half shaft, thus restraining sliding half movements. Replace bushing(s).</li> </ul>
	<ul> <li>5. Check sliding half slider shoes.</li> <li>a. Worn slider shoes.</li> <li><i>Replace.</i></li> </ul>

SYMPTOM	VIBRATIONS ORIGINATING FROM DRIVEN PULLEY.
CONDITION	NORMAL USE.
Test/Inspection	<ol> <li>Check sliding half play.</li> <li>a. Sliding half runout. Replace sliding half bushing.</li> </ol>
	<ul> <li>2. Check sliding half and fixed half straightness.</li> <li>a. Sliding half/fixed half runout. Replace.</li> </ul>
	<ul> <li>3. Check cam slider shoes.</li> <li>a. One or two slider shoes out of three are broken. <i>Replace.</i></li> </ul>

SYMPTOM	PULLEYS DO NOT DOWN SHIFT PROPERLY.
CONDITION	NORMAL USE.
Test/Inspection	1. Check driven pulley spring tension.
	a. Spring tension is too weak. Adjust according to specifications (refer to TECHNICAL DATA 10).
	2. Refer to VIBRATIONS COMING FROM DRIVEN PULLEY and check items listed.
	3. Check drive pulley bushings (cleanliness, wear, etc.).
	a. Bushings stick to fixed half pulley shaft. <i>Clean or replace.</i>
	4. Check driven pulley spring tension.
	a. Spring tension is too weak. <i>Replace.</i>

SYMPTOM	IT IS DIFFICULT TO ENGAGE TRANSMISSION IN FORWARD OR REVERSE GEAR.
CONDITION	NORMAL USE.
Test/Inspection	<ol> <li>Check position of gear shift lever adjustment screw.</li> <li>a. Improper adjustment. Adjust according to specifications (refer to TRANSMISSION 05).</li> </ol>

SYMPTOM	UNEVEN BELT WEAR ON ONE SIDE ONLY.
CONDITION	NORMAL USE.
Test/Inspection	<ol> <li>Check tightening torque of engine mount bolts.</li> <li>a. Loose engine mount. Tighten engine mount nuts/bolts equally.</li> </ol>
	<ul> <li>2. Check pulley alignment.</li> <li>a. Pulley misalignment.</li> <li><i>Align pulleys.</i></li> </ul>
	<ul> <li>3. Check drive belt contact area on pulleys.</li> <li>a. Rough or scratched pulley surfaces.</li> <li>Repair or replace pulley half.</li> </ul>
A00D09Y	<ul> <li>4. Check driven pulley sliding half play.</li> <li>a. Driven pulley bushing worn. <i>Replace bushing.</i></li> </ul>

SYMPTOM	BELT GLAZED EXCESSIVELY OR HAVING BAKED APPEARANCE.
CONDITION	NORMAL USE.
Test/Inspection	<ol> <li>Check if drive pulley bushings are worn.</li> <li>a. Insufficient pressure on belt sides. Replace bushing.</li> </ol>
	<ul> <li>2. Check condition of drive pulley fixed half shaft.</li> <li>a. Rusted drive or driven pulley shafts. Clean shaft with fine steel wool.</li> </ul>
	<ul> <li>3. Check if pulley halves are clean.</li> <li>a. Oil on pulley surfaces. Clean pulley halves.</li> </ul>
۲ (/////۱۹۷۲) 400d0ay	<ul> <li>4. Check pulley calibration.</li> <li>a. Improper pulley calibration.</li> <li><i>Calibrate according to specifications.</i></li> </ul>

SYMPTOM	BELT WORN EXCESSIVELY IN TOP WIDTH.
CONDITION	NORMAL USE.
Test/Inspection	1. Check drive pulley.
Considerable use	a. Excessive slippage due to irregular outward actuation movement of drive pulley. <i>Carry out drive pulley inspection.</i>
AND LA START	2. Check drive belt identification number.
ALL CARGO CONSTANT	a. Improper belt angle. (wrong type of belt). Replace belt with an appropriate drive belt.
MINOSINHOLISDAD.CT	3. Check drive belt width.
New belt	a. Considerable use. Replace belt if 3 mm (1/8") less than recommended width (see TECHNICAL DATA 10).

SYMPTOM	BELT WORN NARROW IN ONE SECTION.
CONDITION	NORMAL USE.
Test/Inspection	1. Check if parking brake is released.
	a. Parking brake is engaged. Release parking brake.
	2. Check track tension/alignment.
	a. Frozen or too tight track. Liberate track from ice or check track tension and alignment.
	3. Check drive pulley.
	a. Drive pulley not functioning properly. Repair or replace drive pulley.
	4. Check idle speed.
	a. Engine idle speed too high. Adjust according to specifications.
	5. Check drive belt length.
	a. Incorrect belt length. Replace belt with an appropriate drive belt (refer to TECHNICAL DATA 10).
	6. Check distance between pulleys.
	a. Incorrect pulley distance. Readjust according to specifications.
	7. Check belt deflection.
A00D0CY	a. Deflection is too small. Adjust according to specifications.

SYMPTOM	BELT SIDES WORN CONCAVE.
CONDITION	NORMAL USE.
Test/Inspection	1. Check pulley half surfaces.
	a. Rough or scratched pulley half surfaces. <i>Repair or replace.</i>
	<ul> <li>2. Check drive belt identification number.</li> <li>a. Unspecified type of belt.</li> <li>Replace belt with an appropriate drive belt (refer to TECHNICAL DATA 10).</li> </ul>

SYMPTOM	BELT DISINTEGRATION.
CONDITION	NORMAL USE.
Test/Inspection	1. Check drive belt identification number.
	a. Excessive belt speed. Using unspecified type of belt. Replace belt with proper type of belt (refer to TECHNICAL DATA 10).
	2. Check if pulley halves are clean.
A00DOEY	a. Oil on pulley surfaces. Clean pulley surfaces with fine emery cloth and wipe clean using Loctite Safety Solvent (P/N 413 7082 00) and a cloth.

SYMPTOM	BELT EDGE CORD BREAKAGE.
CONDITION	NORMAL USE.
Test/Inspection	1. Check pulley alignment.
	a. Pulley misalignment. Align pulley according to specifications (refer to TECHNICAL DATA 10).
A00DOFY	

SYMPTOM	FLEX CRACKS BETWEEN COGS.
CONDITION	NORMAL USE.
Test/Inspection	1. Check drive belt condition.
ANDDOGY	a. Considerable use, belt wearing out. <i>Replace.</i>

SYMPTOM	SHEARED COGS, COMPRESSION SECTION FRACTURED OR TORN.
CONDITION	NORMAL USE.
Test/Inspection	<ol> <li>Check drive belt rotational direction.</li> <li>a. Improper belt installation. <i>Replace.</i></li> </ol>
	<ul> <li>2. Check if drive belt rubs against components.</li> <li>a. Belt rubbing on stationary object. <i>Relocate components.</i></li> </ul>
	<ul> <li>3. Check drive pulley.</li> <li>a. Violent engagement of drive pulley. Check drive pulley engagement speed, drive pulley bushings and components.</li> </ul>

Subsection 04 (TRANSMISSION AND BRAKE SYSTEMS)

SYMPTOM	BELT "FLIP-OVER" AT HIGH SPEED.
CONDITION	NORMAL USE.
Test/Inspection	1. Check pulley alignment.
	a. Pulley misalignment. Align pulley according to specifications (refer to TECHNICAL DATA 10).
	2. Check drive belt identification number.
Ê,	a. Using unspecified type of belt. Replace belt with an appropriate drive belt.
A00D0IY	

### **BRAKE SYSTEM**

### HYDRAULIC BRAKE

SYMPTOM	SPONGY BRAKE CONDITION.
CONDITION	NORMAL USE.
Test/Inspection	Replace brake fluid and bleed system. If problem still occurs, replace master cylinder.

SYMPTOM	BRAKE FLUID LEAKING.
CONDITION	NORMAL USE.
Test/Inspection	1. Check for loosen hose connectors. Retighten.
	2. Check for damaged hose, master cylinder and caliper. Replace part(s) and check for proper mounting.

SYMPTOM	BRAKE SYSTEM IS NOISY.
CONDITION	NORMAL USE.
Test/Inspection	<ol> <li>Check brake pad thickness.</li> <li>a. Pads are worn up to wear warner. Replace.</li> </ol>

## **ELECTRICAL SYSTEM**

The following chart is provided to help in diagnosing the probable source of troubles. It should be used as a guideline. Some causes or corrections may not apply to a specific model.

SYMPTOM	STARTER DOES NOT TURN.
CONDITION	NORMAL USE.
Test/Inspection	<ul> <li>1. Check fuse.         <ul> <li>a. Burnt fuse.</li> <li>Check wiring condition and replace fuse.</li> </ul> </li> </ul>
	<ul> <li>2. Check continuity of starter switch contact points.</li> <li>a. Poor contact of starter switch contact points. Repair or replace switch.</li> </ul>
	<ul> <li>3. Check continuity between starter switch and solenoid.</li> <li>a. Open circuit between starter switch and solenoid switch. <i>Repair.</i></li> </ul>

SYMPTOM	STARTER TURNS; BUT DOES NOT CRANK THE ENGINE.
CONDITION	NORMAL USE.
Test/Inspection	<ol> <li>Check battery capacity.</li> <li>a. Shorted battery cell(s). Replace.</li> </ol>
	<ul> <li>2. Check battery charge.</li> <li>a. Weak battery.</li> <li><i>Recharge.</i></li> </ul>
	<ul> <li>3. Check wire connection.</li> <li>a. Inadequate connection (too much resistance).</li> <li>Clean and reconnect.</li> </ul>
	4. Check solenoid switch contact disc.
	a. Burnt or poor contact of solenoid switch contact disc. <i>Replace solenoid switch.</i>
	5. Check continuity of solenoid switch pull-in winding.
	a. Open circuit of solenoid switch pull-in winding. <i>Replace solenoid switch.</i>
	<ul> <li>6. Check brushes.</li> <li>a. Poor contact of brushes.</li> <li><i>Replace brushes.</i></li> </ul>
	7. Check commutator. a. Burnt commutator. <i>Turn commutator in lathe.</i>

<ul> <li>8. Check height of commutator mica.</li> <li>a. Commutator mica too high. Undercut mica.</li> </ul>
9. Check field coil resistance. a. Shorted field coil. <i>Repair or replace yoke.</i>
<b>10. Check armature resistance.</b> a. Shorted armature. <i>Repair or replace armature.</i>
<ul> <li>11. Check tension of brush springs.</li> <li>a. Weak brush spring tension. Replace springs.</li> </ul>
<b>12. Check yoke assembly magnets.</b> a. Weak magnets. <i>Replace yoke assembly.</i>
<ul> <li>13. Check if bushings are worn.</li> <li>a. Worn bushings.</li> <li><i>Replace bushings.</i></li> </ul>

SYMPTOM	STARTER TURNS, BUT OVERRUNNING CLUTCH PINION DOES NOT MESH WITH RING GEAR.
CONDITION	NORMAL USE.
Test/Inspection	<ol> <li>Check clutch pinion gear.</li> <li>a. Worn clutch pinion gear. Replace clutch.</li> </ol>
	2. Check clutch. a. Defective clutch. <i>Replace clutch.</i>
	<ul> <li>3. Check movement of clutch on splines.</li> <li>a. Poor movement of clutch on splines. Clean and correct.</li> </ul>
	<ul> <li>4. Check clutch bushing.</li> <li>a. Worn clutch bushing.</li> <li><i>Replace clutch.</i></li> </ul>
	<ul> <li>5. Check starter bushings.</li> <li>a. Worn starter bushing(s).</li> <li><i>Replace bushing(s)</i>.</li> </ul>
	6. Check ring gear. a. Worn ring gear. Replace ring gear.

SYMPTOM	ELECTRIC STARTER KEEPS TURNING WHEN ENGINE IS STARTED.
CONDITION	NORMAL USE.
Test/Inspection	1. Check clutch.
	a. Jammed clutch pinion gear. <i>Replace or clean.</i>
	2. Check movement of clutch on splines.
	a. Clutch is stuck on splines. <i>Clean.</i>
	3. Check ignition switch.
	a. Ignition switch does not return to its ON position or is short-circuited. Adjust retaining screw or replace switch.
	4. Check solenoid.
	a. Shorted solenoid switch winding(s). Replace solenoid switch.
	5. Check solenoid switch contacts.
	a. Melted solenoid switch contacts. Replace solenoid switch.
	6. Check starter switch.
	a. Starter switch returns poorly. <i>Replace ignition switch.</i>

SYMPTOM	NOISE OCCURENCE WHEN STARTING ENGINE.
CONDITION	NORMAL USE.
Test/Inspection	1. Check if ring gear is well-mounted to drive pulley inner half.
	a. Loose and/or broken bolts. Retighten bolts using thread locker or replace ring gear and drive pulley inner half.

SYMPTOM	REGULATOR BLACK WIRE IS MELTED (HARNESS SIDE).
CONDITION	NORMAL USE.
Test/Inspection	<ol> <li>Check that big ground wire at battery is well connected to chassis.</li> <li>a. Corroded and/or loose connection(s). Clean and/or retighten.</li> </ol>

SYMPTOM	OPTIONAL ELECTRIC STARTER DOES NOT WORK WHEN TURNING IGNITION SWITCH.
CONDITION	NORMAL USE.
Test/Inspection	<ol> <li>Check connection of BLACK wire (solenoid ground) in 3-wire housing coming from magneto (white housing).</li> </ol>
	a. Corroded and/or loose connection(s). <i>Clean and/or retighten.</i>

SYMPTOM	ELECTRIC STARTER SOMETIMES DOES NOT WORK WHEN TURNING IGNITION SWITCH.
CONDITION	NORMAL USE.
Test/Inspection	1. Check battery cables and starter wires.
	a. Corroded and/or loose connection(s). <i>Clean and/or retighten.</i>
	2. Check fuse.
	a. Oxidized fuse.
	Clean.
	3. Check wiring harness connections.
	a. Oxidized connections. Clean or replace defective terminals.
	4. Check ignition switch.
	a. Defective contacts in ignition switch. <i>Replace.</i>
	5. Check solenoid of electric starter.
	a. Shorted solenoid wiring harness or eroded contact washer. <i>Replace.</i>

SYMPTOM	HEADLAMP NOT LIGHTING.
CONDITION	WHITE BULB.
Test/Inspection	1. Check bulb.
	a. Gas leak. <i>Replace bulb.</i>
CONDITION	BROKEN ELEMENT.
Test/Inspection	1. Check for loose headlamp housing and bulb socket.
	a. Vibration problem. Tighten headlamp mounting screws. Lock bulb in socket. Replace bulb.
CONDITION	MELTED FILAMENT (ENDS OF ELEMENT HOLDER) AND BLACK BULB.
Test/Inspection	1. Check voltage at headlamp at different speeds. It must not be above 15 Vac.
	<b>NOTE:</b> If quartz halogen bulb is involved, ensure that proper voltage regulator is installed.
	a. Excessive voltage in lighting circuit. Replace voltage regulator and ensure proper grounding. Retest.

SYMPTOM	HEADLAMP DIMING.
CONDITION	NORMAL USE.
Test/Inspection	<ol> <li>Check voltage at headlamp at different speeds. It must not be below 11 Vac.</li> <li>a. Insufficient voltage in lighting circuit. Replace voltage regulator and retest.</li> </ol>
	2. Visually inspect wiring harness for damaged and/or melted wires and/or bad wire terminal crimping and/or connections.
	a. Heating, rotating or sharp part in contact with harness. Improper harness routing. <i>Repair/replace damaged wires and/or terminals. Reroute harness where necessary.</i>
	3. On manual start models: Verify regulator ground.
	a. Rusted or loose retaining screws. Clean, apply lithium grease (LMZ1) and firmly tighten screws.
	4. Verify if there is an interconnection between AC and DC current.
	a. Faulty installation of optional equipment. Find optional equipment connected directly to DC ground (BK wire or chassis) or to any DC hot wire (RD, RD/BL). Disconnect and reconnect to AC current (YL and YL/BK wires).
	5. Verify if optional electric accessories are overloading the magneto/generator.
	a. Excessive electrical load to magneto/generator. Reduce the electrical load by removing excess accessories. Reconnect as recommended by manufacturer.
	6. Hot Grips brand: Verify if they were connected in parallel by mistake.
	a. Excessive electrical load to magneto/generator. Reconnect as recommended by manufacturer.
	7. Bombardier heating grips: Verify if the return wires of the elements were grounded to the chassis by mistake.
	a. Faulty installation of optional equipment. Reconnect as recommended by manufacturer.
	<ul> <li>8. Verify if heating grips installation overloads the magneto/generator capacity.</li> <li>a. Excessive electrical load to magneto/generator. Reduce the electrical load by removing accessories.</li> </ul>

SYMPTOM	FALSE FUEL AND/OR TEMPERATURE GAUGE READINGS.
CONDITION	NORMAL USE.
Test/Inspection	<ol> <li>Verify if gauge was connected on DC current by mistake (in case of optional installation).</li> </ol>
	a. Faulty installation of optional equipment. Find optional wires connected directly to DC ground (BK wire to chassis) or to any DC hot wire (RD, RD/BL). Disconnect and reconnect to AC current (YL and YL/BK wires).
	2. Verify sender unit for free movement and/or correct arm position.
	a. Defective or damaged part. Correct or replace sender unit.
	3. Verify sender unit/gauge wiring harness condition.
	a. Heating, rotating or sharp part in contact with harness. Improper harness routing. <i>Replace or repair damaged wires. Reroute where necessary.</i>

SYMPTOM	WITH ENGINE IDLING NO ELECTRICAL ACCESSORIES WORK.
CONDITION	NORMAL USE.
Test/Inspection	1. Verify regulator.
	a. Faulty regulator. <i>Replace.</i>

SYMPTOM	DESS PILOT LAMP LIGHTS WEAKLY AT 7000 RPM.
CONDITION	NORMAL USE.
Test/Inspection	1. Verify filter near pilot lamp.
	a. Faulty filter. <i>Replace.</i>

SYMPTOM	INTENSITY MODULE DOES NOT WORK AFTER ENGINE IS STARTED.
CONDITION	NORMAL USE.
Test/Inspection	1. Stop engine and restart.

SYMPTOM	ENGINES DOES NOT START — NO SPARK AT SPARK PLUG.
CONDITION	AT ENGINE CRANKING.
Test/Inspection	1. Verify spark plug condition.
	a. Defective, improperly set, worn-out, fouled. Identify source of problem and correct. Replace spark plugs.
	2. Verify spark plug cap resistance with an ohmmeter.
	a. Defective part. <i>Replace cap.</i>
	3. Verify if problem originated from electrical system wiring harness and/or accessories and/or ignition cut-out switches by unplugging the 3-wire connectors between the magneto/generator and the vehicle wiring harness. Check condition of connectors.
	a. Heating, rotating or sharp part in contact with harness. Improper harness routing. Defective switch(es). Corroded connector terminals. Replace or repair damaged wires. Reroute where necessary. Replace defective switch(es). Clean terminals and apply silicone dielectric grease.
	4. Verify trigger coil resistance with an ohmmeter and connector condition.
	a. Defective coil. Corroded connector terminals. Replace defective coil. Clean terminals and apply silicone dielectric grease.
	5. Verify condition of ignition coil.
	a. Mechanically damaged part. Vibration problem. Electrically damaged part. <i>Tighten mounting screws. Replace ignition coil.</i>
	6. Verify condition of ignition generator coils.
	a. Mechanically damaged part. Vibration problem. Electrically damaged part. <i>Tighten mounting screws. Replace coils.</i>
	<ul> <li>7. Verify CDI (Capacitor Discharge Ignition) module.</li> <li>a. Mechanically damaged part. Vibration problem. Electrically damaged part. Tighten mounting screws. Replace CDI module, retest and verify ignition timing.</li> </ul>

SYMPTOM	CDI MODULE DOES NOT WORK.
CONDITION	NORMAL USE.
Test/Inspection	<ol> <li>Check that high tension coil wires do not touch any metal parts.</li> <li>a. Short circuit. Isolate and reroute wires.</li> </ol>

SYMPTOM	ENGINE STALLS.
CONDITION	AT LOW SPEED.
Test/Inspection	1. Verify items 4, 5 and 6 above.

Subsection 05 (ELECTRICAL SYSTEM)

SYMPTOM	IRREGULAR ENGINE SPEED.
CONDITION	AT HIGH SPEED.
Test/Inspection	1. Verify items 4, 5 and 6 above.
CONDITION	AT LOW SPEED.
Test/Inspection	<ol> <li>Verify items 4 and 5 above and trigger coil/flywheel protrusion air gap.</li> <li>a. Air gap too large. Readjust air gap.</li> </ol>

SYMPTOM	ENGINE IS MISFIRING — ERRATIC SPARK AT SPARK PLUG.
CONDITION	RIDING ON WET SNOW.
Test/Inspection	<ol> <li>Verify if spark plug wires and/or spark plug cap seals are sealing out moisture.</li> <li>a. Defective wires and/or seals. Replace defective part.</li> </ol>
	<ul> <li>2. Verify if ignition system wiring harness connectors are in good condition and/or are sealing out moisture.</li> <li>a. Loose connectors, corroded terminals or defective parts.</li> </ul>
CONDITION	Clean terminals and apply silicone dielectric grease. Replace defective parts. NORMAL USE.
CONDITION	
Test/Inspection	<ol> <li>Verify misfiring by observing flash of stroboscopic timing light; unplug connectors between magneto/generator and vehicle wiring harness to isolate problem. Check condition of connectors.</li> <li>a. Defective spark plug(s) and/or cable(s)/cap(s). Defective electrical system wiring harness and/or accessories and/ignition cut-out switches. Condition of connector terminals. <i>Replace defective parts and/or repair damaged wires. Replace defective switch(es). Clean terminals and apply silicone dielectric grease.</i></li> </ol>
CONDITION	RIDING IN DEEP AND THICK SNOW.
Test/Inspection	1. Perform all verifications outlined under ENGINE DOES NOT START — NO SPARK AT SPARK PLUG.
	<ul> <li>2. Verify spark plugs. Proceed with spark plug analysis in order to identify source of problem.</li> <li>a. Defective and/or worn spark plug(s) and/or cable(s) and/or cap(s). Replace defective part(s). Proceed with ignition system testing procedures. Perform engine analysis.</li> </ul>

Subsection 05 (ELECTRICAL SYSTEM)

SYMPTOM	FOULED (BLACK) SPARK PLUG TIP.
CONDITION	NORMAL USE.
Test/Inspection	<ol> <li>Check carburetor(s).</li> <li>a. Carburetion is too rich. Adjust according to specifications (refer to TECHNICAL DATA 10).</li> </ol>
	<ul> <li>2. Check injection oil consumption.</li> <li>a. Injection pump flow is too high. Adjust according to specifications or replace.</li> </ul>
	<ul> <li>3. Check oil quality.</li> <li>a. Poor oil quality that creates deposits.</li> <li>Use BOMBARDIER-ROTAX injection oil.</li> </ul>
	<ul> <li>4. Check engine compression.</li> <li>a. Leaking piston ring(s).</li> <li><i>Replace.</i></li> </ul>

SYMPTOM	SPARK PLUG TIP(S) IS (ARE) LIGHT GREY.
CONDITION	NORMAL USE.
Test/Inspection	1. Refer to ENGINE SLOWS DOWN OR STOPS AT HIGH RPM and check items listed.
	2. Check spark plug heat range.
	a. Spark plug heat range is too high. Replace by Bombardier's recommended spark plug (refer to TECHNICAL DATA 10).
	3. Check if air intake silencer leaks.
	a. Air surplus coming from opening(s) located between halves. <i>Seal.</i>
	4. Check carburetor adapter collars.
	a. Loose collar(s). <i>Tighten.</i>
	5. Check carburetor adapter(s).
	a. Cracked or deformed adapter(s). <i>Replace.</i>

SYMPTOM	BRAKE LIGHT REMAINS ON.
CONDITION	NORMAL USE.
Test/Inspection	1. Check if bulb is properly installed.
	a. Bulb is not installed correctly (contact elements are reversed). <i>Install bulb correctly.</i>
	2. Check brake switch.
	a. Switch contact remains closed. Replace brake switch.

Subsection 05 (ELECTRICAL SYSTEM)

SYMPTOM	REAR LIGHT BULB FLASHES.
CONDITION	NORMAL USE.
Test/Inspection	1. Check bulb tightness in housing.
	a. Looseness at bulb contact elements. Install bulb correctly.
	2. Check if rear light is properly connected.
	a. Connector housing is partially connected. Install connector housing properly.
	3. Check continuity of wires.
	a. Corroded terminals and/or broken wires. Replace terminal(s) or crimp defective wires.

SYMPTOM	TACHOMETER DOES NOT WORK.
CONDITION	NORMAL USE.
Test/Inspection	1. Check continuity of wires.
	a. Corroded terminals and/or broken wires. Replace terminal(s) or crimp defective wires.
	2. Check tachometer part number.
	a. Models with 360 W magneto have a different tachometer. <i>Replace with appropriate one.</i>

SYMPTOM	INTENSITY MODULE DIMMER SWITCH DOES NOT WORK.
CONDITION	NORMAL USE.
Test/Inspection	1. Check that a special washer is installed. Refer to STEERING SYSTEM 08-02.

SYMPTOM	HIGH BEAM PILOT LAMP LIGHTS UP WHEN LOW BEAM IS SELECTED.
CONDITION	NORMAL USE.
Test/Inspection	1. Check proper connections.
	a. YELLOW wire connected to pilot lamp. Mixed-up connections with heating element pilot lamps. <i>Reconnect a YELLOW/BLACK wire to pilot lamp. YELLOW wires are connected to</i> <i>heating element pilot lamps.</i>

SYMPTOM	ON MACH Z ONLY, HEATED THROTTLE LEVER OR GRIPS DO NOT WORK PROPERLY.
CONDITION	NORMAL USE.
Test/Inspection	1. Check proper connection of RD/YL wire coming from regulator.

# **SUSPENSION AND TRACK**

The following chart is provided to help in diagnosing the probable source of troubles. It should be used as a guideline. Some causes or corrections may not apply to a specific model.

SYMPTOM	REAR SUSPENSION BOTTOMS OUT.
CONDITION	NORMAL USE.
Test/Inspection	<ol> <li>Check rear spring preload or rear arm spring preload.</li> <li>a. Spring tension is too low. Increase rear arm spring preload.</li> </ol>

SYMPTOM	SLIDER SHOES WEAR OUT PREMATURELY.
CONDITION	NORMAL USE.
Test/Inspection	1. Check track tension.
	a. Pressure is too great on slider shoes. Adjust according to specifications (refer to TECHNICAL DATA 10). Replace defective parts.

SYMPTOM	TRACK CLEATS BECOME BLUE.		
CONDITION	NORMAL USE.		
Test/Inspection	1. Check track tension.		
a. Pressure is too great on cleats. Adjust according to specifications (refer to TECHNICAL DATA 10).			
	2. Check slider shoes and/or suspension retaining screws.		
	a. Worn slider shoes or lost retaining screws. Replace defective parts and/or tighten loose screws.		

Subsection 06 (SUSPENSION AND TRACK)

SYMPTOM	NOISE OR VIBRATIONS ORIGINATING FROM THE TRACK.	
CONDITION	NORMAL USE.	
Test/Inspection	1. Check slide suspension retaining bolts.	
	<ul> <li>a. Missing bolt(s) allowing movement of certain components which in turn interfere with track rotation. <i>Replace missing bolt(s).</i></li> </ul>	
	2. Check condition of idler wheel(s).	
	a. Idler wheel rubber is damaged. <i>Replace.</i>	
	3. Check guide cleats.	
	a. Top portion of guide cleat(s) is bent. <i>Replace.</i>	
	4. Check sprockets.	
	a. One or various teeth of drive shaft sprockets are broken. <i>Replace sprocket(s).</i>	
	5. Check track rods and/or internal traction teeth.	
	a. One or various track rods and/or teeth are broken. <i>Replace track.</i>	

SYMPTOM	DERAILING TRACK.	
CONDITION	NORMAL USE.	
Test/Inspection	<ol> <li>Check track tension.</li> <li>a. Track is too loose. Adjust.</li> </ol>	
2. Check if track and slider shoes are properly aligned. a. Improper alignment. <i>Adjust.</i>		

SYMPTOM	REAR SUSPENSION IS LOW OR TOO STIFF.	
CONDITION	NORMAL USE.	
Test/Inspection	1. Check track tension. a. Track is too tight.	
	Adjust. 2. Check if axles are properly lubricated.	
a. Improper lubrication and/or contaminated grease (sticky oil sludge). <i>Clean and/or lubricate.</i>		
	<ul> <li>3. Check rear spring preload.</li> <li>a. Insufficient preload.</li> <li>Increase preload using adjustment cams.</li> </ul>	

Subsection 06 (SUSPENSION AND TRACK)

SYMPTOM	WHEN HANDLEBAR IS TURNED, SNOWMOBILE UNDERSTEERS.	
CONDITION	NORMAL USE.	
Test/Inspection	<ol> <li>Check ski runner condition.</li> <li>a. Worn ski runners. Replace.</li> </ol>	
	<ul> <li>2. Check tension of front spring adjustment cams.</li> <li>a. Insufficient ski pressure on the ground. Increase spring preload.</li> </ul>	
	<ul> <li>3. Check if front arm stopper strap is too long.</li> <li>a. Insufficient ski pressure on the ground.</li> <li>Shorten stopper strap.</li> </ul>	
	<ul> <li>4. Check front arm spring tension.</li> <li>a. Insufficient ski pressure on the ground.</li> <li>Loosen spring tension.</li> </ul>	

SYMPTOM	HANDLE BAR IS DIFFICULT TO TURN.			
CONDITION	NORMAL USE.			
Test/Inspection	1. Check position of front spring adjustment cams.			
	a. More pressure on the ground when cam increases spring preload. <i>Reduce front spring preload.</i>			
	2. Check position of stopper strap.			
	a. More weight when stopper strap is short. Lengthen front arm stopper strap.			
	3. Check position of front arm shock adjustment cam(s).			
	a. When spring tension is weak, more weight is transferred to the skis. <i>Increase spring preload.</i>			
	4. Check condition of ball joints.			
	a. Corrosion restrains movement. Lubricate or replace.			
	5. Check swing arm camber (liquid cooled models).			
	a. Too much ski leg inclination. Adjust camber to specifications.			

Subsection 06 (SUSPENSION AND TRACK)

SYMPTOM	THE SNOWMOBILE IS UNSTABLE (IT MOVES FROM LEFT TO RIGHT AND VICE VERSA).	
CONDITION	NORMAL USE.	
Test/Inspection	<ol> <li>Check ski runner condition.</li> <li>a. Worn or bent ski runners. Replace ski runners.</li> </ol>	
	<ul> <li>2. Check ski alignment.</li> <li>a. Improper ski alignment. Align skis in order to obtain proper toe-out (opening) (to adjust, refer to STEERING SYSTEM 08).</li> </ul>	
	<ul> <li>3. Check if bushings are too loose in steering system.</li> <li>a. Bushings are too loose. Replace.</li> </ul>	

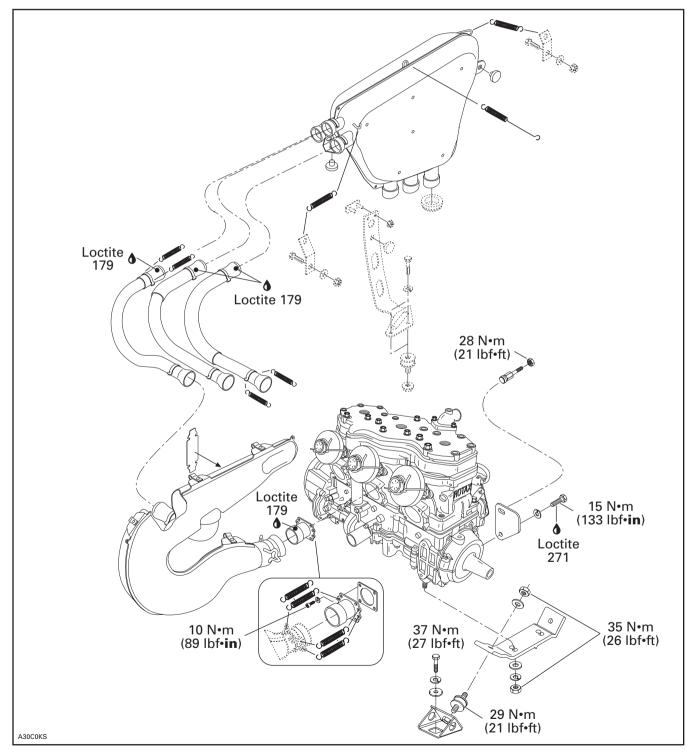
# **TABLE OF CONTENTS**

599, 699 AND 809 ENGINE TYPES	04-02-1
ENGINE REMOVAL AND INSTALLATION	04-02-1
REMOVAL FROM VEHICLE	04-02-2
INSTALLATION ON VEHICLE	04-02-3
TOP END	04-02-4
COMPONENT REMOVAL	
CLEANING	
DISASSEMBLY	04-02-5
INSPECTION	04-02-6
ASSEMBLY	04-02-6
BOTTOM END	04-02-10
CLEANING	04-02-11
DISASSEMBLY	04-02-11
INSPECTION	04-02-11
ASSEMBLY	04-02-12
LEAK TEST AND ENGINE DIMENSION MEASUREMENT	04-03-1
LEAK TEST	04-03-1
PREPARATION	04-03-1
PROCEDURE	
FINALIZING REASSEMBLY	
COOLING SYSTEM LEAK TEST	
ENGINE LEAK VERIFICATION FLOW CHART	04-03-5
ENGINE DIMENSION MEASUREMENT	04-03-6
CYLINDER HEAD WARPAGE	
CYLINDER TAPER	
CYLINDER OUT OF ROUND	
COMBUSTION CHAMBER VOLUME MEASUREMENT	
USED PISTON MEASUREMENT	
CYLINDER/PISTON CLEARANCE	
RING/PISTON GROOVE CLEARANCE	
RING END GAP	
CRANKSHAFT DEFLECTION	
CONNECTING ROD BIG END AXIAL PLAY	
CONNECTING ROD/PISTON PIN CLEARANCE	
CONNECTING ROD/CRANKPIN CLEARANCE	
CRANKSHAFT END-PLAY	
CHECKING SURFACE FLATNESS	
RECTIFYING SURFACES	
CHECKING CRANKSHAFT ALIGNMENT	04-03-12

### Section 04 ENGINE

Subsection 01 (TABLE OF CONTENTS)

CDI SYSTEM	04-04-1
NIPPONDENSO TRIGGER COIL IGNITION SYSTEM	
CLEANING	04-04-2
DISASSEMBLY	04-04-2
ASSEMBLY	04-04-4
OIL INJECTION SYSTEM	04-05-1
OIL INJECTION PUMP	04-05-1
OIL PUMP IDENTIFICATION	04-05-2
CLEANING	04-05-2
DISASSEMBLY	04-05-2
ASSEMBLY	04-05-2
ADJUSTMENT	04-05-3
CHECKING OPERATION	04-05-4
LIQUID COOLING SYSTEM	04-06-1
INSPECTION	
DRAINING THE SYSTEM	
DISASSEMBLY AND ASSEMBLY	
COOLING SYSTEM REFILLING PROCEDURE	
REWIND STARTER	04-07-1
REMOVAL	
DISASSEMBLY	
ASSEMBLY	
INSTALLATION	
CARBURETOR AND FUEL PUMP	04-08-1
REMOVAL	
CLEANING AND INSPECTION	
IDENTIFICATION	
DISASSEMBLY AND ASSEMBLY	
CARBURETOR FLOAT LEVEL ADJUSTMENT	
INSTALLATION	
CARBURETOR ADJUSTMENTS	
PRELIMINARY IDLE SPEED ADJUSTMENT	
IDLE SPEED FINAL ADJUSTMENT	
CHOKE	


# Subsection 01 (TABLE OF CONTENTS)

DPM	
PURPOSE	04-08-15
METHOD	04-08-15
OVERALL SYSTEM OPERATION	04-08-15
DPM MODULE OPERATION	04-08-16
AIR PUMP OPERATION	04-08-21
DPM MANIFOLD OPERATION	04-08-21
TESTING PROCEDURE	04-08-23
FUEL PUMP	04-08-25
REMOVAL	04-08-26
PUMP VERIFICATION	04-08-26
CLEANING AND INSPECTION	04-08-26
INSTALLATION	04-08-26
UEL TANK AND THROTTLE CABLE	04-09-1

# **599, 699 AND 809 ENGINE TYPES**

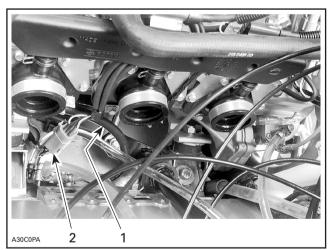
### **ENGINE REMOVAL AND INSTALLATION**

All Models



#### Section 04 ENGINE Subsection 02 (599, 699 AND 809 ENGINE TYPES)

### **REMOVAL FROM VEHICLE**

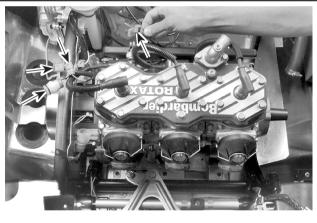

Open hood and close fuel shut-off valve.

Drain engine coolant.

Remove or unplug the following then lift off engine from engine compartment.

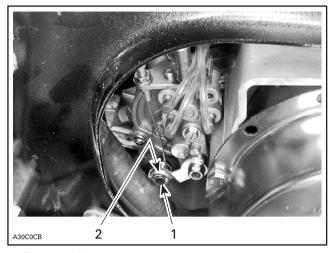
**NOTE:** 3-cylinder engine is more heavy then a 2 cylinder engine. It weights about 45 kg (100 lb). Use of a hoist is recommended.

- belt guard
- air silencer
- drive belt
- driven pulley
- speedometer cable from angle drive
- rewind starter handle
- drive pulley (not necessary if engine has not to be disassemble)
- hood, refer to 09-02 BODY
- carburetors
- impulse hose and high tension coil connector housing




- 1. Impulse hose
- 2. High tension coil connector housing

 exhaust pipes using exhaust spring remover/ installer (P/N 529 0354 00)




- tuned pipes starting with no. 3, no. 2 then no. 1
- after muffler
- wiring connections



A30C0QA

- oil injection inlet line at oil injection pump, install hose pincher
- oil pump cable



^{1.} Remove circlip 2. Plastic washer

- coolant hoses at cylinder head and at front bottom of engine
- engine support screws
- engine stopper (left rear of engine)
- removable side member

Turn steering left side. Remove engine from vehicle.

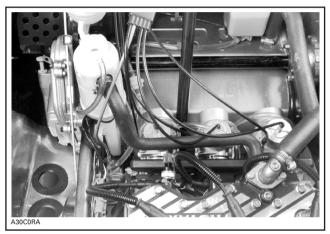
# 1,2,3,4, Engine Support Nut and Manifold Screw

Torque the engine/support nuts to 35 N•m (26 lbf•ft).

Torque rubber mount/support bracket to 29 N•m (21 lbf•ft).

Torque rubber mount/support nuts to 37 N•m (27 lbf•ft).

Torque manifold screws to 10 N•m (89 lbf•in).

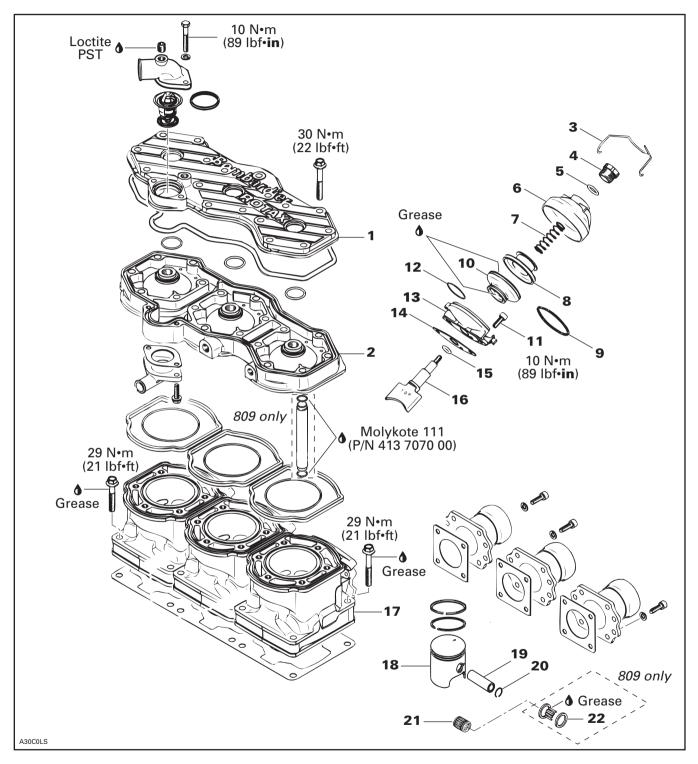

Torque removable side member screws to 7 N•m (62 lbf•in).

Torque removable side member nut over countershaft support to 15 N $\bullet$ m (133 lbf $\bullet$ in).

## INSTALLATION ON VEHICLE

To install engine on vehicle, reverse removal procedure. However, pay attention, to all appropriate component/system reinstallation procedures described throughout this *Shop Manual* and to the following:

- It is easier to install oil pump cable before installing engine on vehicle.
- Oil pump cable must be routed above small cylinder head hose.




NOTE ALL CABLE POSITIONS

- After throttle cable installation, check carburetor maximum throttle opening and oil injection pump adjustment.
- Check pulley alignment and drive belt tension.
- Should a light exhaust leak be experienced at muffler ball joint, Loctite 179 (P/N 413 7103 00) can be used.

#### Section 04 ENGINE Subsection 02 (599, 699 AND 809 ENGINE TYPES)

### **TOP END**



### COMPONENT REMOVAL

Most engine components can be removed with engine on vehicle such as:

- cylinder head
- piston(s)
- cylinder(s)
- rewind starter
- oil pump
- water pump
- magneto flywheel
- RAVE valve(s)

### CLEANING

Discard all gaskets and O-rings.

Clean all metal components in a non-ferrous metal cleaner.

Scrape off carbon formation from cylinder exhaust port cylinder head and piston dome using a wooden spatula.

**NOTE:** The letters ''AUS'' (over an arrow on the piston dome) must be visible after cleaning.

Clean the piston ring groove with a groove cleaner tool or with a piece of broken ring.

### DISASSEMBLY

### 18, Piston

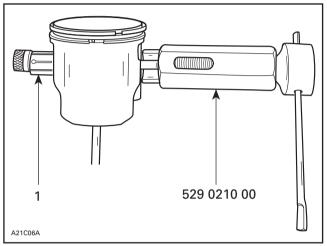
#### 599 and 699 Engines

Place a clean cloth over crankcase then with a pointed tool inserted in piston notch, remove circlip **no. 20** from piston **no. 18**.

Use piston pin puller (P/N 529 0210 00).

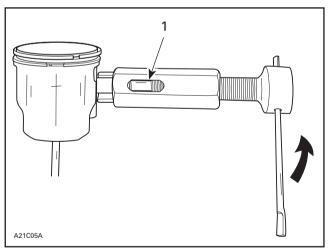
Unscrew puller in order to remove piston pin **no. 19** and cage bearing **no. 21** from piston.

Remove piston from connecting rod.


#### 809 Engine

On this engine, piston pin needle bearing **no. 22** is mounted without a cage.

Use piston pin puller (P/N 529 0210 00) along with expansion sleeve and locating sleeve.


Place a clean cloth or rubber pad (P/N 529 0234 00) over crankcase to prevent circlips **no. 20** from falling into crankcase. Then with a pointed tool inserted in piston notch, remove circlips from piston **no. 18**.

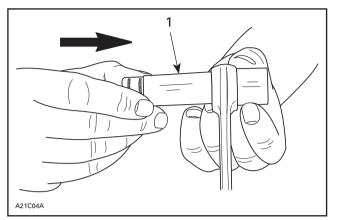
Insert piston pin puller (P/N 529 0210 00) then install expansion sleeve over puller rod.



1. Expansion sleeve

Pull out piston pin **no. 19** by unscrewing puller until first thread of puller rod aligns with the mark.






Screw in puller in order to remove it from piston. Remove piston from connecting rod.

Install locating sleeve. Then push needle bearings along with thrust washers using a 21 mm (.826 in) diameter pusher.

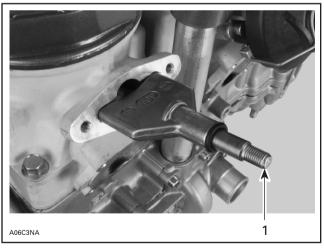
## Section 04 ENGINE

Subsection 02 (599, 699 AND 809 ENGINE TYPES)



1. Pusher 21mm (.826 in)

### **RAVE System**


**NOTE:** RAVE stands for Rotax Adjustable Variable Exhaust.

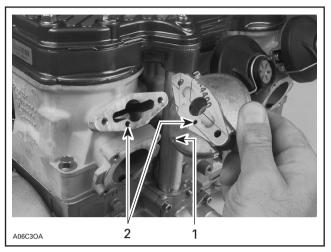
Remove spring clip **no. 3**, cover **no. 6** and spring **no. 7**.

Unscrew valve piston no. 8.

Remove cylindrical screws **no. 11** then valve rod housing **no. 13**. Remove bellows **no. 10** and spring **no. 12**.

Pull out exhaust valve no. 16.




1. Exhaust valve

### INSPECTION

**NOTE:** Refer to LEAK TEST AND ENGINE DIMEN-SIONS MEASUREMENT 04-03.

#### **RAVE System**

Check valve rod housing and cylinder for clogged passages.



Draining hole
 Passages

**NOTE:** Oil dripping from draining hole indicates a loosen spring or damaged bellows.

#### 10, Bellows

Check for cracked, dried or perforated bellows.

### 7, Spring

		WIRE DIA.	FREE LENGTH	PRELOAD IN N (LBF) AT
ENGINE TYPE	SPRING P/N	mm (in)	mm (in)	COMPRESSED LENGTH OF 14.7 mm (.579 in)
599	420	0.8	48.5	0.0100
	2399 40	(.031)	(1.91)	(.00224)
699 and	420	0.9	48.5	0.0169
809	2399 44	(.031)	(1.91)	(.0038)

## ASSEMBLY

### **RAVE System**

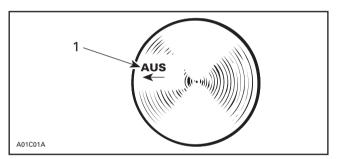
Install rave valve with its mention top as illustrated in the removal photo. Tighten red cap  ${\rm no.}~4$  screw to bottom.

#### Section 04 ENGINE

Subsection 02 (599, 699 AND 809 ENGINE TYPES)

#### 17,18, Cylinder and Piston

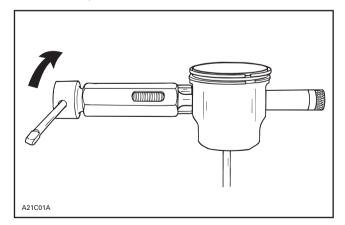
NOTE: Be sure to restore the chamfer around all cylinder sleeve port openings.


Before inserting piston in cylinder, lubricate the cylinder with new injection oil or equivalent.

#### 1,2,17, Cylinder Head Cover, Cylinder Head and Cylinder

Check flatness of part sealing surfaces.

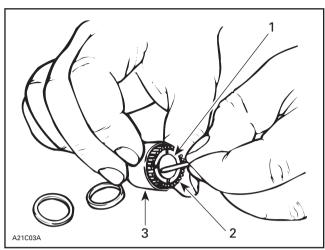
Refer to LEAK TEST AND ENGINE DIMENSION MEASUREMENT 04-03 and look for Checking Surface Flatness.


- Mount piston over connecting rod with the letters "AUS" (over an arrow on the piston dome) facing in the direction of exhaust port (see illustration below).



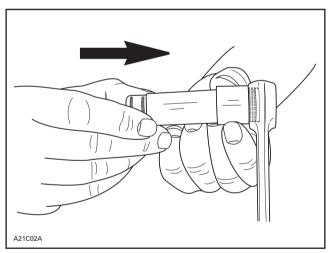
1. Exhaust

#### 599 and 699 Engines

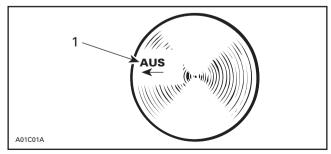

- Install piston pin puller (P/N 529 0210 00) and turn handle until piston pin is correctly positioned in piston.



- Remove piston pin puller.


#### 809 Engine

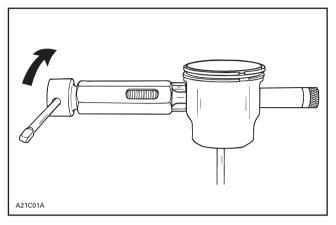
When reinstalling original needle bearings, make sure that 31 needles are inserted between expansion sleeve and locating sleeve.




Expansion sleeve 1.

- 2. 3. 31 needles
- Locating sleeves
- Grease thrust washers and install them on each end of needles.
- Using a 21 mm (.826 in) diameter pusher, insert needles into connecting rod.

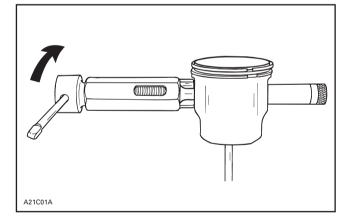



Mount piston over connecting rod with the letters "AUS" (over an arrow on the piston dome) facing in the direction of exhaust port.



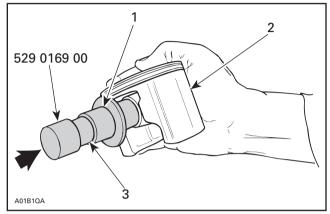
1. Exhaust

#### Section 04 ENGINE Subsection 02 (599, 699 AND 809 ENGINE TYPES)

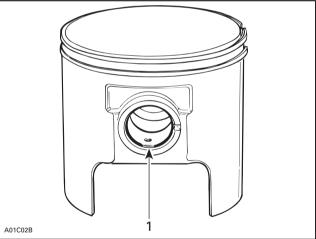

Install piston pin puller (P/N 529 0210 00) and turn handle until piston pin is correctly positioned in piston.



Remove piston pin puller and expansion sleeve.


When installing new needle bearing, insert needles with thrust washers. Instead of expansion sleeve, needles are held in place by 2 inner plastic cage halves.

Use piston pin puller (P/N 529 0210 00) to insert piston pin. Plastic halves should come off piston. If not, pull them using long nose pliers.



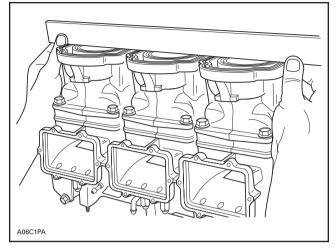

#### All Engines

To minimize the effect of acceleration forces on circlip, install each circlip so the circlip break is at 6 o'clock as illustrated. Use piston circlip installer (P/N 529 0169 00).

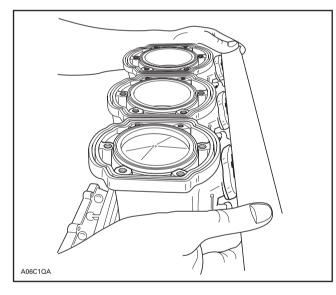


- TYPICAL
- Place circlip in
   Restrain
- 3. Oil



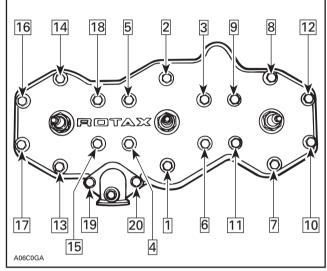

TYPICAL

1. Circlip break




Circlips must not move freely after installation if so, replace them.

Install cylinders and check for same height.

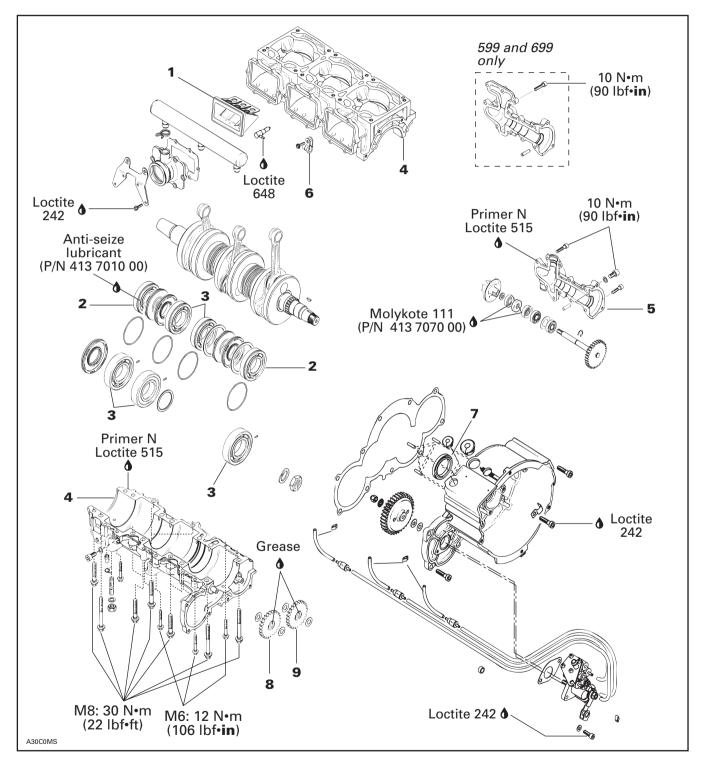



Also check for proper cylinder alignment.



At assembly, torque cylinder head screws in the following illustrated sequence. Tightening torques are:

M6 screws: 12 N•m (106 lbf•in) M8 screws: 30 N•m (22 lbf•ft)




TYPICAL

### Section 04 ENGINE

Subsection 02 (599, 699 AND 809 ENGINE TYPES)

### **BOTTOM END**



**NOTE:** Engine must be removed from chassis to perform the following procedures.

### CLEANING

Discard all oil seals, gaskets, O-rings and sealing rings.

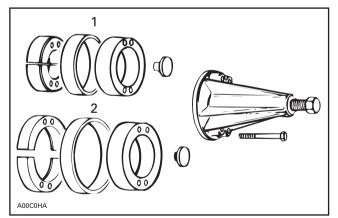
Clean all metal components in a non-ferrous metal cleaner. Use Gasket remover (P/N 413 7085 00) accordingly.

Remove old paste gasket from crankcase mating surfaces with Gasket remover (P/N 413 7085 00).

## **CAUTION**

Never use a sharp object to scrape away old sealant as score marks incurred are detrimental to crankcase sealing.

### DISASSEMBLY


### General

To remove drive pulley, refer to DRIVE PULLEY 05-03.

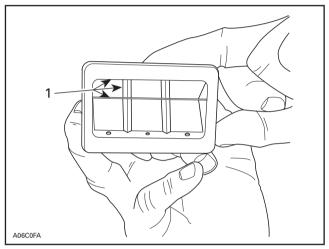
To remove magneto, refer to CDI MAGNETO 04-04.

### 2,3, Crankshaft Bearing

To remove bearings from crankshaft, use a protective cap and special puller, as illustrated.

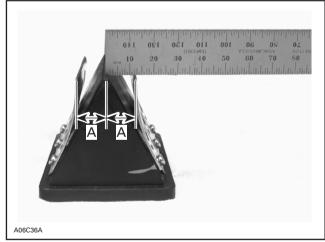


^{1.} PTO side 2 MAG side


## INSPECTION

**NOTE:** Refer to LEAK TEST AND ENGINE DI-MENSIONS MEASUREMENT 04-03.

### 1, Reed Valve


With blade stopper removed, check reed valve for proper tightness. There must be no play between blade and valve body when exerting a finger pressure on blade at blade stopper location.

In case of a play, turn blade upside down and recheck. If there is still a play, replace blade and/or valve body.



^{1.} No play

Check blade stopper distance from center of reed valve block.



TYPICAL

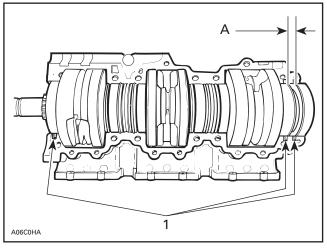
Bent blade stopper as required to obtain the proper distance.

A. 599 Engine: 14 ± 0.25 mm (.551 ± .010 in) 699 Engine: 12 ± 0.25 mm (.472 ± .010 in) 809 Engine: 12 ± 0.25 mm (.472 ± .010 in)

### ASSEMBLY

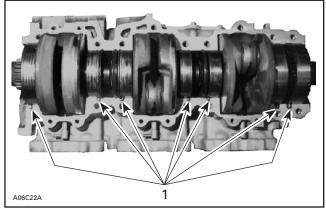
#### 2,3, Crankshaft Bearing, Anti-seize Lubricant and Labyrinth Sleeve

Smear anti-seize lubricant (P/N 413 7010 00) on part of crankshaft where bearing fits.


Prior to installation, place bearings into an oil container filled with oil previously heated to 75°C (167°F). This will expand bearing and ease installation.

#### 809 Engine Only

Last PTO bearing is 8 mm (5/16 in) from inner bearing.


### 4, Crankcase

At crankshaft installation, position drive pins as illustrated.



809 ENGINE

- 1. Drive pins A. 8 mm (5/16 in)
- 4. 011111 (3/101

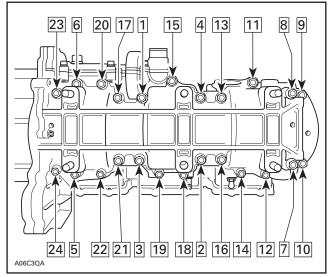


599 AND 699 ENGINES 1. Drive pins

Crankcase halves **no. 4** and water pump housing are factory matched and therefore, are not interchangeable as single halves.

Prior to joining of crankcase halves, spray some new injection oil (or equivalent) on all moving parts of the crankshaft. Spray Primer N (P/N 413 7081 00) on one of mating surfaces. Let it dry for 10 to 20 minutes.

Apply Loctite 515 (P/N 413 7027 00) on the other mating surface.


**NOTE:** Primer N allows Loctite 515 to fully cure on aluminum surfaces. It increases filling capacity and reduce curing time.

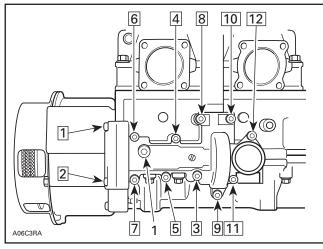
Align both crankcase halves before tightening screws.

Torque crankcase screws in the following illustrated sequence. Tightening torques are:

M6 screws: 12 N•m (106 lbf•in)

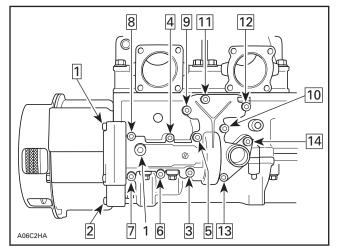
M8 screws: 30 N•m (22 lbf•ft)




#### TYPICAL

### 5, Water Pump Housing

Spray Primer N (P/N 413 7081 00) on one of mating surfaces. Let it dry for 10 to 20 minutes.


Apply Loctite 515 (P/N 413 7027 00) on the other mating surface.

Tighten water pump housing screws to 10 N•m (90 lbf•in) following sequence as illustrated.



#### 809 ENGINE

1. Oil level plug



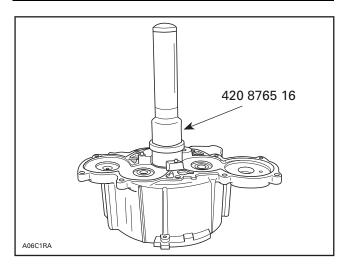
#### 599 AND 699 ENGINES

#### 1. Oil level plug

Add chaincase synthetic oil (P/N 413 8028 00) into water pump housing until oil level reach bottom of plug hole. See above illustration. Total capacity is about 14 cc (.47 U.S. oz).

This oil addition is needed only when servicing water pump. During normal engine operation, this oil can flow through engine. After that fuel/oil mixture will lubricate water pump bearings by scavenging.

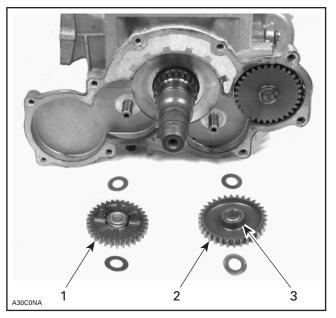
#### 6, Screw


Apply Loctite 242 on screw threads. Install the screw retaining oil line clip first. If experiencing leaks at carburetor adaptor, use primer N and Loctite 515 on sealing surfaces of crankcase and adaptor.

#### 7, Seal

Install seal using pusher (P/N 420 8765 16).

### CAUTION


Make sure oil seal is fully pushed against stator shoulder.



#### 8,9, Plastic Gear and Steel Gear

Apply grease to needle bearing of each gear.

Install plastic gear on oil pump side. Steel gear goes on water side, its shoulder first.



1. Plastic gear

Steel gear
 Shoulder facing crankcase

# LEAK TEST AND ENGINE DIMENSION MEASUREMENT

## LEAK TEST

The following gives verification procedures for liquid cooled engines though it also applies to fan cooled engines. For FC engines, do not consider information pertaining to coolant system and crankcase rotary valve gear reservoir/components.

On twin-cylinder engines, each cylinder cannot be verified individually due to leakage from one cylinder to the other through rotary valve (except on engines with separate intake manifolds). Besides, on FC engines, leak will occur through labyrinth sleeve in center of crankshaft.

### PREPARATION

- 1. Remove tuned pipe/muffler and exhaust manifold.
- 2. Install plugs over exhaust flanges. Tighten with previously removed screws.
- 3. On engines with RAVE system, remove RAVE valves and install plugs over flanges. Tighten with previously removed screws.
- 4. Remove carburetor(s).
- 5. Insert plug(s) in intake rubber boot(s). Tighten with clamps already there.
- 6. Using a hose pincher(s) (P/N 529 0099 00), block impulse hose(s).

**NOTE:** Do not block large hoses of rotary valve gear lubrication system.

7. Install air pump on any valve of exhaust plug.

**NOTE:** If necessary, lubricate air pump piston with mild soap.

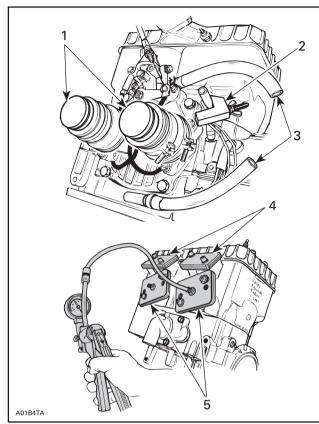
## **CAUTION**

Using hydrocarbon lubricant (such as engine oil) will damage rubber seal of pump piston.

- 8. Rotate crankshaft so that piston goes to BDC (Bottom Dead Center) on side where the pump is installed. This will open exhaust port.
- 9. Activate pump and pressurize engine to 34 kPa (5 PSI). Do not exceed this pressure.
- 10. Engine must stand this pressure during 3 minutes. If pressure drops before 3 minutes, check tester kit by spraying a soapy solution on pump piston, all plugs and fittings.
  - If tester kit is leaking, bubbles will indicate where leak comes from.
  - If tester kit is not leaking, check engine as per following procedure.

## PROCEDURE

**NOTE:** A flow chart has been prepared as a visual reference. See last page of this chapter.


Using flow chart and following text, pressurize area to be tested and spray soapy solution at the indicated location.

#### TEST PRESSURE: 34kPa (5 PSI) for 3 minutes

- If there is a leak at the tested location, it is recommended to continue testing next items before overhauling engine. There is a possibility of more than one leak.
- If there is no leak at the tested location, continue pumping to maintain pressure and continue with next items until leak is found.

#### Section 04 ENGINE Subsection 03 (LEAK TEST AND ENGINE DIMENSION MEASUREMENT)

### Engine



#### **TYPICAL**

- Blocked intake flanges
- 3.
- Blocked impulse fitting Open ends (if applicable) Blocked RAVE valve flanges (if applicable) Blocked exhaust flanges 4. 5.


When exhaust manifold is installed, use rubber plug. (In this case it is not necessary to move piston to BDC).

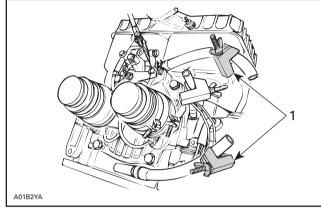


1. Rubber plug

Check the following:

- 1. All jointed surfaces and screw/stud threads of engine:
  - spark plug base, insulator
  - cylinder head
  - cylinder base
  - crankcase halves (joint)
  - rotary valve cover
  - oil injection pump mounting flange (O-ring, seal)
  - coolant pump housing
  - bleed screws/plugs
- 2. Small injection oil lines coming from pump.




- Banjo fittings
   Small injection oil lines

Check for air bubbles or oil column going toward pump. It indicates defective check valve in banjo fitting (or lines).

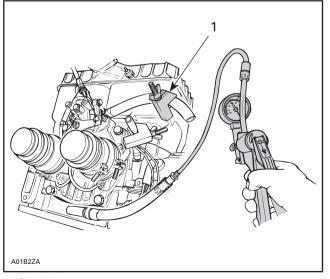
3. Remove cooling system cap.

Check for air bubbles in antifreeze. It indicates defective cylinder head O-ring or cylinder base gasket.

4. Block both hoses of rotary valve gear lubrication system with hose pinchers.



1. Block both hoses


If leakage stops, ignore remaining items and check crankcase rotary valve gear reservoir as per **Crankcase Rotary Valve Gear Reservoir** of this section.

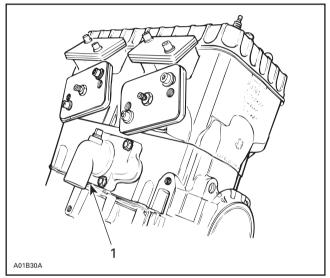
- 5. Remove drive pulley then check crankshaft outer seal.
- 6. Remove rewind starter and magneto system then check crankshaft outer seal.
- 7. Check crankcase rotary valve gear reservoir.

### Crankcase Rotary Valve Gear Reservoir

Block one hose of rotary valve gear lubrication system with a hose pincher and install an adapter in remaining hose.

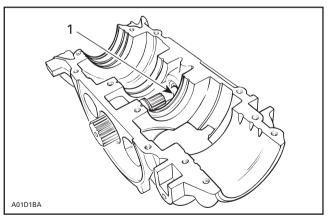
Install air pump on adapter and pressurize as before.




1. Remove a spark plug or any plug of leak tester kit on PTO side.

If pressure drops, it indicates defective crankshaft inner seal on PTO side.

2. Remove a spark plug or any plug of leak tester kit on MAG side.

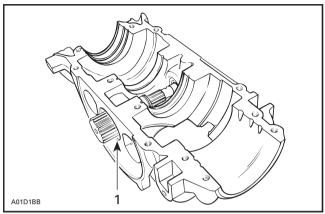

If pressure drops, it indicates defective crankshaft inner seal on MAG side.

3. Check drain hole below coolant pump housing with soapy water.



1. Drain hole

If there is a leak, it indicates defective seal of rotary valve shaft (oil seal beside coolant seal).




1. Oil seal

1. Blocked hose

#### **Section 04 ENGINE** Subsection 03 (LEAK TEST AND ENGINE DIMENSION MEASUREMENT)

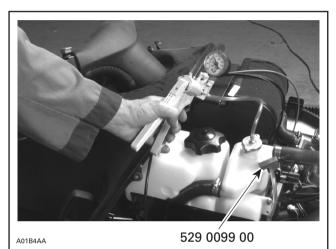
4. Remove rotary valve cover and check for leak of rotary valve seal with soapy water.



1. Seal

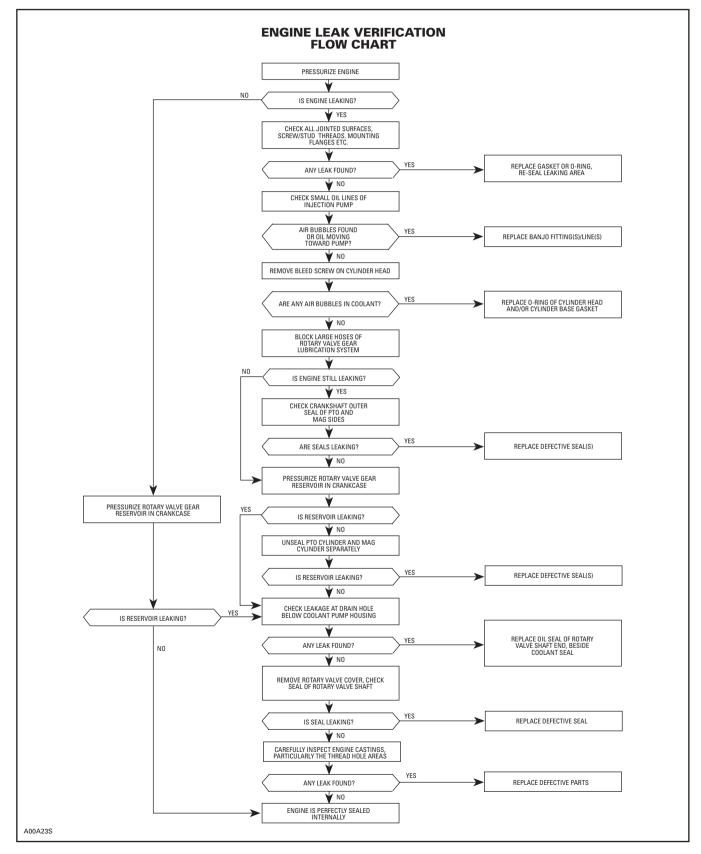
5. If leak still persists, it indicates a defective casting somewhere in engine.

Disassemble engine and carefully check for defects in castings. Pay attention to tapped holes which may go through engine sealed area and thus lead to leakage.


### FINALIZING REASSEMBLY

After reassembling engine, always recheck for leakage.

### COOLING SYSTEM LEAK TEST


Install special plug (radiator cap) (P/N 529 0214 00) and hose pincher (P/N 529 0099 00) on overflow hose. Pressurize all system through coolant reservoir to 15 PSI.

Check all hoses and cylinder/base for coolant leaks. Spray a soap/water solution and look for air bubbles.



TYPICAL

### ENGINE LEAK VERIFICATION FLOW CHART



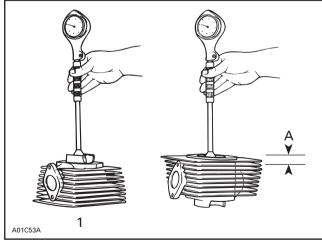
### ENGINE DIMENSION MEASUREMENT

This section covers all engine types.

### CYLINDER HEAD WARPAGE

ENGINE TYPE	MAXIMUM
All	0.05 mm (.002 in) per 50 mm (2 in) of surface
	0.5 mm (.020 in) for total length of cylinder head

Check gasketed surface of the cylinder head with a straightedge and a feeler gauge.


### CYLINDER TAPER

ENGINE TYPE	MAXIMUM
All	0.10 mm (.004 in)

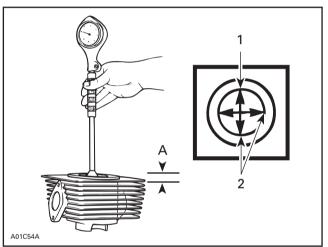
Compare cylinder diameter 16 mm (5/8 in) from top of cylinder to just below its intake port area.

On rotary valve engines, measure just below auxiliary transfer port, facing exhaust port. If the difference exceeds the specified dimension the cylinder should be rebored and honed or should be replaced.

NOTE: Be sure to restore the chamfer around all cylinder sleeve port openings.



1. Below the intake port


A. 16 mm (5/8 in) from top

### CYLINDER OUT OF ROUND

ENGINE TYPE	MAXIMUM	
599 and 699	0.05 mm (.002 in)	
809	0.08 mm (.003 in)	

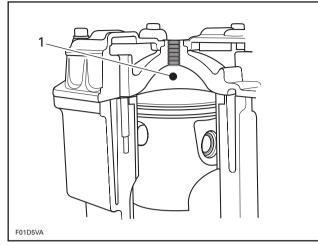
Measuring 16 mm (5/8 in) from top of cylinder with a cylinder gauge, check if the cylinder out of round is more than the specified dimension. If larger, cylinder should be rebored and honed or should be replaced.

NOTE: Be sure to restore the chamfer around all cylinder sleeve port openings.



Piston pin position

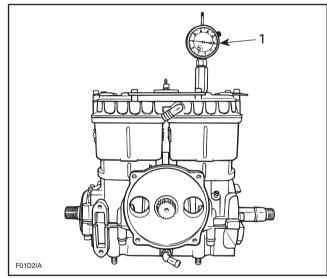
1 Measures to be compared


2. Measures to be A. 16 mm (5/8 in)

### **COMBUSTION CHAMBER** VOLUME MEASUREMENT

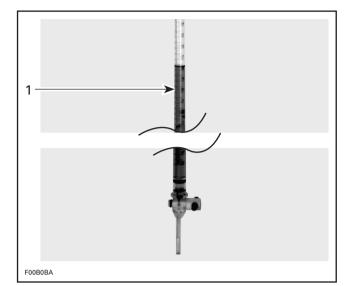
The combustion chamber volume is the region in the cylinder head above the piston at Top Dead Center. It is measured with the cylinder head installed on the engine.

#### Section 04 ENGINE

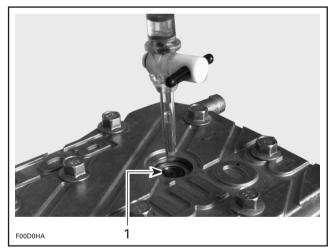

Subsection 03 (LEAK TEST AND ENGINE DIMENSION MEASUREMENT)



1. Combustion chamber


**NOTE:** When checking the combustion chamber volume, engine must be cold, piston must be free of carbon deposit and cylinder head must be leveled.

1. Remove both spark plugs and bring one piston to Top Dead Center a using a TDC gauge.




1. Bring piston to TDC

2. Obtain a graduated burette (capacity 0-50 cc) and fill with an equal part (50/50) of gasoline and injection oil.



- 1. Graduated burette (0-50 cc)
- 3. Open burette valve to fill its tip. Add liquid in burette until level reaches 0 cc.
- 4. Inject the burette content through the spark plug hole until liquid touches the top spark plug hole.

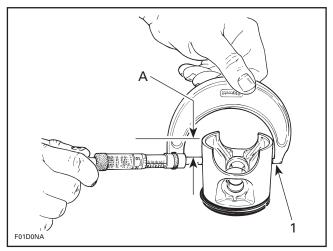


1. Top of spark plug hole

**NOTE:** The liquid level in cylinder must not drop for a few seconds after filling. If so, there is a leak between piston and cylinder. The recorded volume would be false.

#### **Section 04 ENGINE** Subsection 03 (LEAK TEST AND ENGINE DIMENSION MEASUREMENT)

- 5. Let burette stand upward for about 10 minutes, until liquid level is stabilized.
- 6. Read the burette scale to obtain the quantity of liquid injected in the combustion chamber.


**NOTE:** When the combustion chamber is filled to top of spark plug hole, it includes an amount of 2.25 cc corresponding to the spark plug tip.

7. Repeat the procedure for the other cylinder.

ENGINE TYPE	COMBUSTION CHAMBER VOLUME (cc) (up to top thread of spark plug hole)
599	20.35 ± 0.8
699	23.45 ± 1.0
809	26.35 ± 1.1

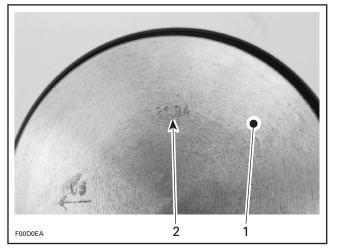
### USED PISTON MEASUREMENT

Using a micrometer, measure piston at A perpendicularly (90°) to piston pin.



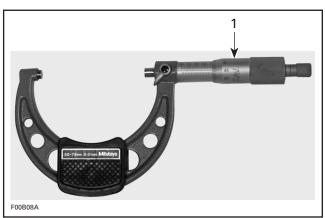
1. Measuring perpendicularly (90°) to piston pin axis A. See table below

ENGINE TYPE	DIMENSION A mm (in)
599	26.2 (1.03)
699 and 809	28.7 (1.13)


The measured dimension should be the same as the one scribed on piston dome. If not, install a new piston.

### CYLINDER/PISTON CLEARANCE

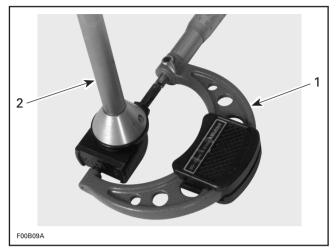
#### **Used and New Pistons**


**NOTE:** Make sure used piston is not worn. See USED PISTON MEASUREMENT above.

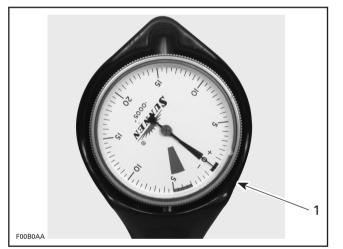
Take the measurement on the piston dome.



Piston dome
 Piston measurement

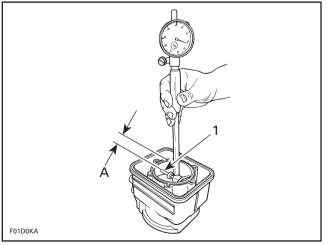

Adjust and lock a micrometer to the specified value on the piston dome.




1. Micrometer set to the piston dimension

With the micrometer set to the piston dimension, adjust a cylinder bore gauge to the micrometer dimension and set the indicator to 0.

# Subsection 03 (LEAK TEST AND ENGINE DIMENSION MEASUREMENT)



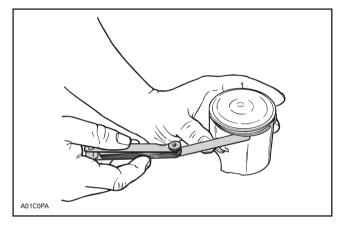

Use the micrometer to set the cylinder bore gauge
 Dial bore gauge



1. Indicator set to 0 (zero)

Position the dial bore gauge at 16 mm (5/8 in) below cylinder top edge.




1. Measuring perpendicularly (90°) to piston pin axis A. 16 mm (5/8 in)

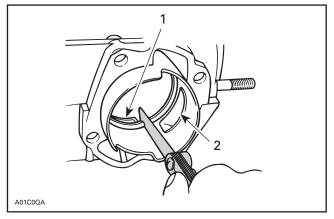
Read the measurement on the cylinder bore gauge. The result is the exact piston/cylinder wall clearance. If clearance exceeds specified tolerance, replace cylinder or rebore. Refer to TECHNI-CAL DATA 10.

**NOTE:** Make sure the cylinder bore gauge indicator is set exactly at the same position as with the micrometer, otherwise the reading will be false.

### RING/PISTON GROOVE CLEARANCE

Using a feeler gauge check clearance between rectangular ring and groove. Replace piston if clearance exceeds specified tolerance. Refer to TECHNICAL DATA 10.




## RING END GAP

Position ring half-way between transfer ports and intake port. On rotary valve engines, position ring just below transfer ports.

**NOTE:** In order to correctly position the ring in the cylinder, use piston as a pusher.

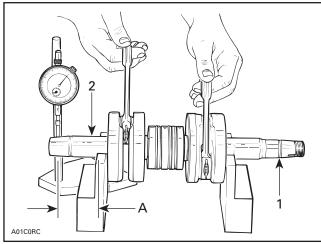
Using a feeler gauge, check ring end gap. Replace ring if gap exceeds specified tolerance. Refer to TECHNICAL DATA 10.

#### **Section 04 ENGINE** Subsection 03 (LEAK TEST AND ENGINE DIMENSION MEASUREMENT)



Transfer port
 Intake port

## CRANKSHAFT DEFLECTION


Crankshaft deflection is measured with a dial indicator.

### Measuring (in engine)

First, check deflection with crankshaft in engine. If deflection exceeds the specified tolerance, recheck deflection using V-shaped blocks to determine the defective part(s). See below.

### Measuring (on bench)

Once engine is disassembled, check crankshaft deflection on V-shaped blocks. If deflection exceeds the specified tolerance, it can be worn bearings or a bent crankshaft. Remove crankshaft bearings and check deflection again on V-shaped blocks to determine the defective part(s). See measurement A in following illustration.



#### TYPICAL

- 1. Measure at mid point between the key and the first thread
- 2. Mid point of crankshaft bearing

### Crankshaft Deflection on PTO Side

ENGINE TYPE	DISTANCE A mm (in)	MAXIMUM ON PTO SIDE mm (in)
599 and 699	105.9 (4.169)	0.03 (.0012)
809	94.4 (3.717)	

### Crankshaft Deflection on MAG Side

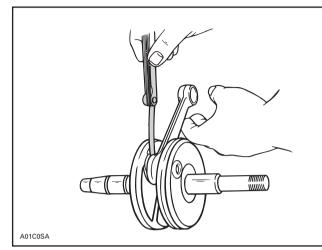
ENGINE TYPE	MAXIMUM ON MAG SIDE mm (in)
All	0.05 (.002)

# Crankshaft Deflection in Center of Crankshaft

ENGINE TYPE	MAXIMUM IN CENTER OF CRANKSHAFT
All	0.08 mm (.0031 in)

**NOTE:** Crankshaft deflection cannot be correctly measured between centers of a lathe.

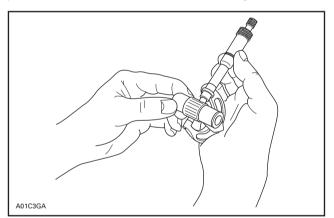
If the deflection exceeds the specified tolerance, crankshaft should be repaired or replaced.

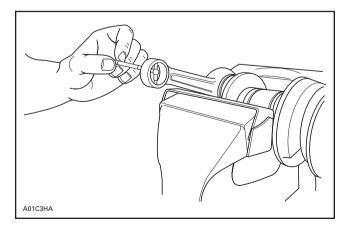

### CONNECTING ROD BIG END AXIAL PLAY

ENGINE TYPE	NEW PARTS MIN MAX.	WEAR LIMIT
599 and 699	0.39 - 0.74 mm (.015029 in)	1.20 mm (.047 in)
809	0.31 - 0.68 (.012027 in)	1.20 mm (.047 in)

Using a feeler gauge, measure distance between thrust washer and crankshaft counterweight. If the distance exceeds specified tolerance, repair or replace the crankshaft.

#### Section 04 ENGINE


Subsection 03 (LEAK TEST AND ENGINE DIMENSION MEASUREMENT)




TYPICAL

### CONNECTING ROD/PISTON PIN CLEARANCE

Measure piston pin with its needle bearing. Compare to inside diameter of connecting rod.





ENGINE	NEW PARTS	WEAR
TYPE	MIN MAX.	LIMIT
All	0.003 - 0.012 mm (.00010005 in)	0.015 mm (.0006 in)

### CONNECTING ROD/CRANKPIN CLEARANCE

ENGINE	NEW PARTS	WEAR
TYPE	MIN MAX.	LIMIT
All	0.024 - 0.038 mm (.00040015 in)	0.06 mm (.0024 in)

### **CRANKSHAFT END-PLAY**

#### All Engine Types

End-play is not adjustable but it should be between 0.10 - 0.30 mm (.004 - .012 in).

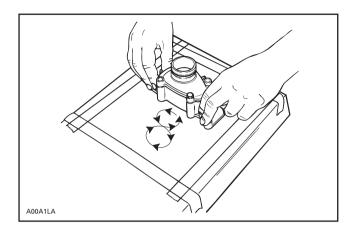
## CHECKING SURFACE FLATNESS

Intake manifold, intake manifold cover, rotary valve cover can be checked for perfectly mating surfaces.

Lay part on a surface plate (marble, mirror or thick glass plate).

Holding down one end of part, try pushing down the other end.

If any play is felt, part must be rectified.


### **RECTIFYING SURFACES**

Stick a fine sand paper sheet on the surface plate then lightly oil the sand paper.

Rub manifold mating surface on sand paper using 8-figure movements.

Sand until mating surface is perfectly straight.

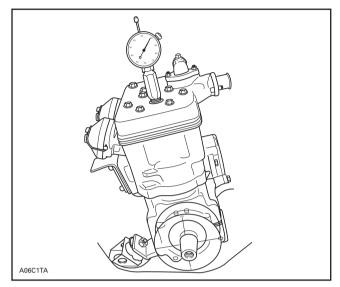
### **Section 04 ENGINE** Subsection 03 (LEAK TEST AND ENGINE DIMENSION MEASUREMENT)



### CHECKING CRANKSHAFT ALIGNMENT

Install a degree wheel (P/N 414 3529 00) on crank-shaft end.

Remove both spark plugs.


Install a TDC gauge (P/N 414 1047 00) in spark plug hole on MAG side.

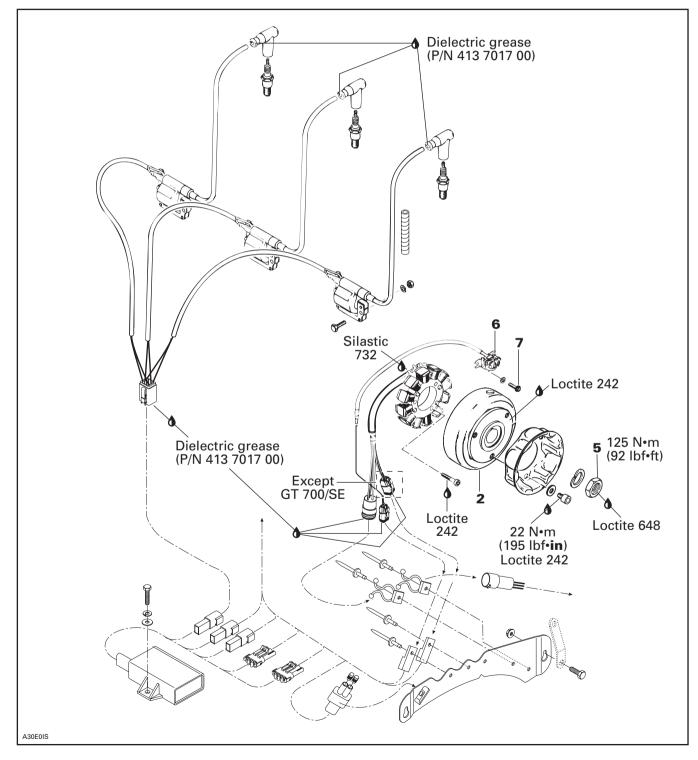
Bring MAG piston at top dead center.

Rotate degree wheel (not crankshaft) so that 360° mark aligns with center of crankcase. Scribe a mark on crankcase.

Remove TDC gauge and install it on center cylinder.

Bring center piston to top dead center. Degree wheel must rotate with crankshaft.




Interval between cylinders must be exactly 120°. Proceed the same with MAG side piston.

Any other reading indicates a misaligned (twisted) crankshaft.

# **CDI SYSTEM**

### NIPPONDENSO TRIGGER COIL IGNITION SYSTEM

599, 699 and 809 Engines



#### Section 04 ENGINE Subsection 04 (CDI SYSTEM)

**NOTE:** The following procedures can be done without removing the engine from chassis. To facilitate magneto removal, hold drive pulley with tool (P/N 529 0276 00).

CDI means Capacitor Discharge System.

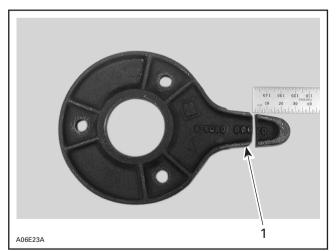
### CLEANING

Clean all metal components in a non-ferrous metal cleaner.

# CAUTION

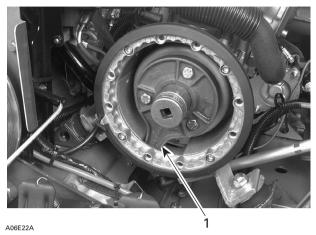
Clean stator and magneto using only a clean cloth.

### DISASSEMBLY


#### 2,5, Magneto and Magneto Flywheel Nut

To gain access to magneto assembly, remove the following parts as needed on different engines:

- tuned pipes and muffler
- rewind starter
- starting pulley
- flywheel no. 4 on 699 engine (mark position before removal)


To remove magneto flywheel retaining nut:

Use magneto puller ring (P/N 420 8760 80) modified as shown.



1. Cut by 25 mm (1 in)

Install puller with its tab in magneto housing opening.



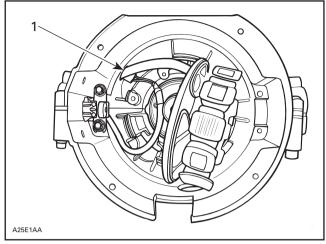
TYPICAI

1. Tab in magneto housing opening

 Remove magneto flywheel nut, using a 30 mm socket machined to 40 mm (1.580 in) outside diameter by 16 mm (5/8 in) long.

**NOTE:** To correctly remove a threadlocked fastener it is first necessary to tap on the fastener to break threadlocker bond. This will eliminate the possibility of thread breakage.

To remove magneto flywheel, install the puller (P/N 529 0225 00).


 Tighten puller bolt and at the same time, tap on bolt head using a hammer to release magneto flywheel from its taper.

### 6,7, Trigger Coil and Screw

Magneto and stator plate must be removed before trigger coil removal.

To replace trigger coil:

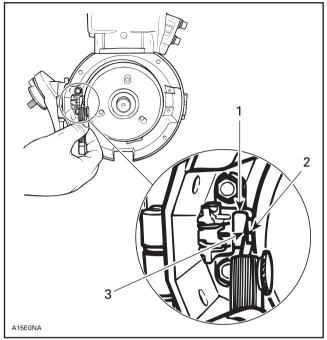
- Disconnect trigger coil connector housing.
- Remove grommet from crankcase where trigger coil wire exits magneto housing.
- Remove retaining screws.
- Remove trigger coil and carefully pull wires.
- Thread magneto harness through crankcase hole before trigger coil harness.



1. Magneto harness through crankcase hole

- Install new trigger coil and other parts removed.

#### Adjustment


Whenever the trigger coil or the magneto flywheel is removed or replaced, the air-gap between the trigger coil and the flywheel protrusion must be checked and adjusted. The purpose of this adjustment is to obtain the minimum clearance between these parts — without touching at any RPM — so that the trigger coil produces its proper electrical output. Ignition timing must also be checked. Refer to IGNITION TIMING 06-02 then look for **Checking Ignition Timing**.



Each time trigger coil air-gap is adjusted, ignition timing must be checked.

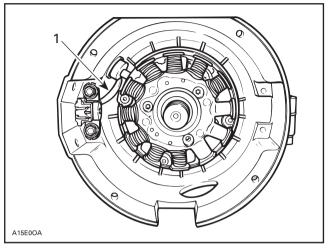
#### Proceed as follows:

- 1. Rotate flywheel so that the protrusion aligns with trigger coil.
- 2. Using a feeler gauge of 0.75 mm (.030 in) min. thick (allowable range is 0.55 mm (.022 in) to 1.45 mm (.057 in)), check air-gap between center pole of trigger coil and flywheel protrusion.
- 3. If necessary, adjust by loosening retaining screws and moving trigger coil toward or away from protrusion.
- 4. Retighten screws and recheck air-gap.



#### ADJUSTING TRIGGER COIL AIR-GAP

- 1. Trigger coil
- Flywheel protrusion
   Measure at center pole of trigger coil 0.75 mm (.030 in)


### 1, Stator

To replace stator:

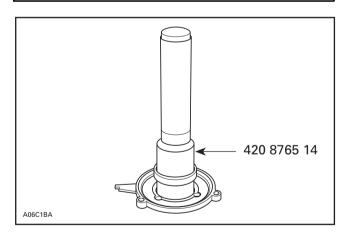
- Disconnect the 3-wire connector (BLACK, RED and BLACK/RED wires).
- Disconnect both YELLOW wires.
- Remove grommet from crankcase where magneto harness exits magneto housing.
- Remove stator plate retaining screws.
- Remove stator plate with stator and carefully pull wires.
- Install new parts and other parts removed taking care not to squeeze trigger coil harness.

### Section 04 ENGINE

Subsection 04 (CDI SYSTEM)



^{1.} Trigger coil harness


# ASSEMBLY

### 3, Oil Seal

Use pusher (P/N 420 8765 14) to install oil seal into stator.

# CAUTION

Make sure oil seal is fully pushed against stator shoulder.



### 2,5, Magneto Flywheel and Nut

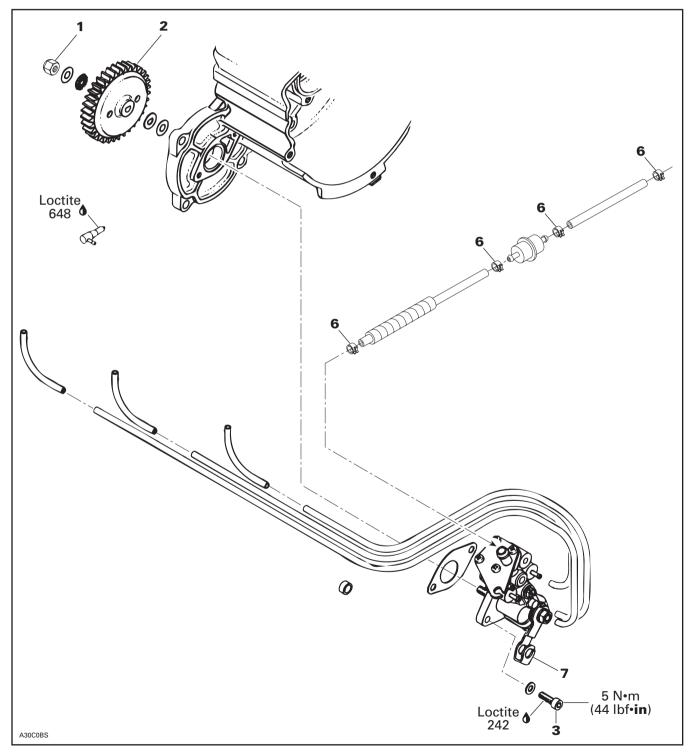
Clean crankshaft extension (taper) and apply Loctite 242 (blue) on taper, then position Woodruff key, flywheel and lock washer on crankshaft.

Clean nut threads and apply Loctite 242 (blue) then tighten nut 125 N•m (92 lbf•ft).

At reassembly coat all electric connections with silicone dielectric grease (P/N 413 7017 00) to prevent corrosion or moisture penetration.

# CAUTION

Do not use silicone "sealant", this product will corrode contacts.


### **Ignition Timing**

Check as described in IGNITION TIMING 06-03.

# **OIL INJECTION SYSTEM**

## **OIL INJECTION PUMP**

599, 699 and 809 Engines



# OIL PUMP IDENTIFICATION

### 7, Pump Lever

Different engines need different pumps. Oil pumps are identified by their levers.

# CAUTION

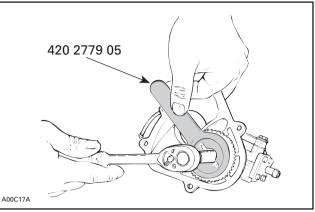
Always mount proper pump on engine.

ENGINE TYPE	OIL PUMP IDENTIFICATION
599	12
699	12
809	13

**NOTE:** The following procedures can be done without removing the engine from chassis.

# CLEANING

Clean all metal components in a non-ferrous metal cleaner.


# DISASSEMBLY

**NOTE:** Some oil pump components are not available as single parts.

# 1,2, Gear Retaining Nut and Oil Pump Gear

To remove gear retaining nut, first extract the needle roller with pliers then lock gear in place using one of the following gear holder.

ENGINE TYPE	TOOL P/N
599/699/809	420 2779 05



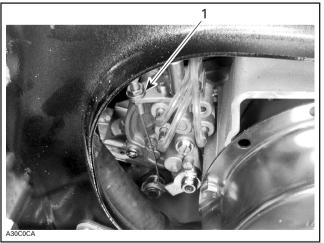
TYPICAL

# ASSEMBLY

### 2, Oil Pump Gear

At gear assembly, apply a light coat of low temperature grease (P/N 413 7061 00) on gear teeth.

### 5,6, Spring Clip and Clamp


Always check for spring clips tightness.

### 3, Screw

Torque to 5 N•m (44 lbf•in).

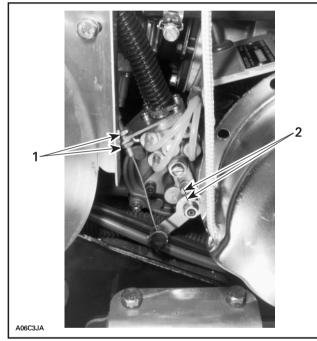
Make sure cable barrel is well seated in oil pump lever.

Secure barrel with plastic washer and circlip. Install cable lock washer above support.



1. Lock washer

Verify cable and oil pump lever operation.


# ADJUSTMENT

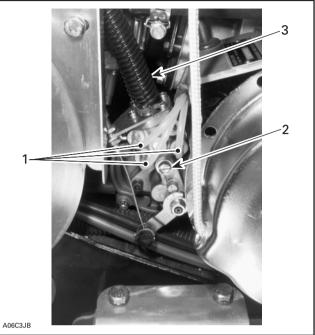
Prior to adjusting the pump, make sure all carburetor adjustments are completed.

### Synchronizing Pump with Carburetor

Eliminate the throttle cable free-play by pressing the throttle lever until a light resistance is felt, then hold in place. The aligning marks on the pump casting and on the lever must align. If not, loosen the adjuster nut and adjust accordingly.

Retighten the adjuster nut.




Adjuster nut 2. Mårks in line

# **CAUTION**

Proper oil injection pump adjustment is very important. Any delay in the opening of the pump can result in serious engine damage.

### To Bleed Oil Lines

Bleed main oil line (between tank and pump) by loosening the bleeder screw until air has escaped from the line. Add injection oil as required.



Small oil lines 1 Bleeder screw

2. Bleeder scre 3. Main oil line

Reinstall all parts.

Bleed the small oil line between pump and intake manifold by running engine at idle while holding the pump lever in fully open position.

**NOTE:** Make a J hook out of mechanical wire to lift the lever.

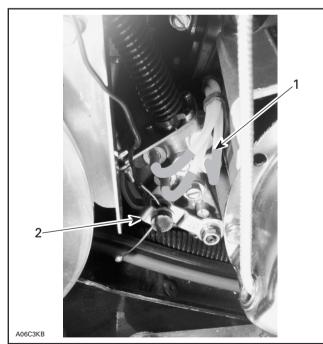


TYPICAL — ENGINE AT IDLE

# WARNING

Ensure not to operate carburetor throttle mechanism. Secure the rear of the vehicle on a stand.

# CHECKING OPERATION


#### On Vehicle

NOTE: Main oil line must be full of oil. See bleeding procedure above.

Lift rear of vehicle and support with a mechanical stand. Unplug oil lines from pump. Start engine and stop it as soon as it fires.

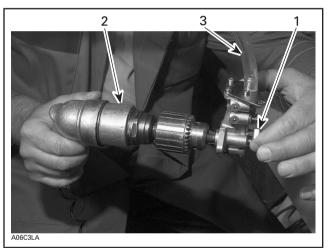
Check that oil in small oil lines has been sucked up (this will be indicated by a clear section of small oil lines). Repeat the procedure until this condition is attained.

Reconnect small oil lines, start engine and run at idle while holding the pump lever in fully open position. Oil columns must advance into small oil lines.



TYPICAL - ENGINE AT IDLE

#### 1. Oil columns advancing


2. Fully open position

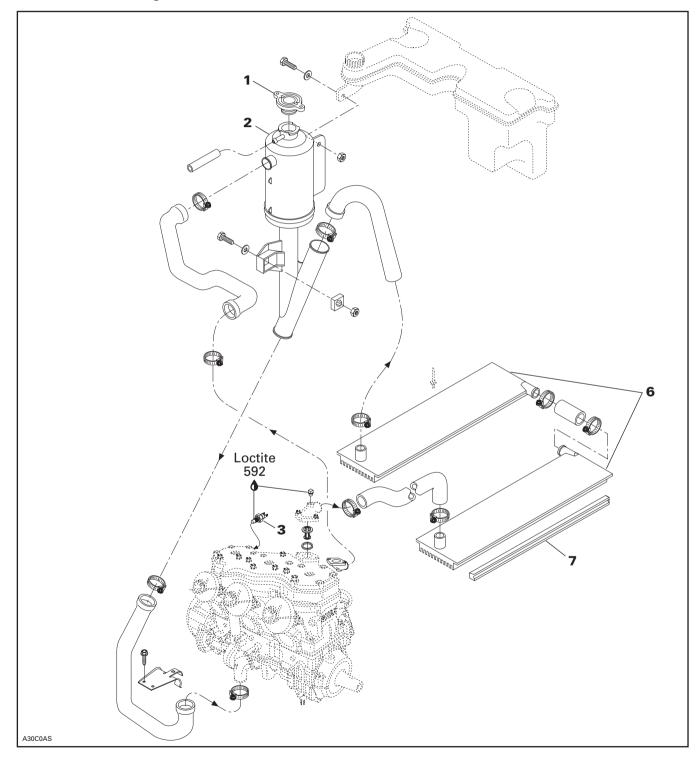
If not, remove pump assembly and check the pump gear and drive shaft (if applicable) for defects, replace as necessary. Test pump as describes below.

NOTE: Through normal use, oil level must not drop in small tubes. If oil drops, verify check valve operation in injection nozzle. Replace as necessary.

### **Oil Pump Test Bench**

Connect a hose filled with injection oil to main line fitting. Insert other hose end in an injection oil container. Using a clockwise rotating drill rotate pump shaft. Oil must drip from outer fittings while holding lever in a fully open position. If not replace pump.




**TYPICAL** 

Fully open position 1

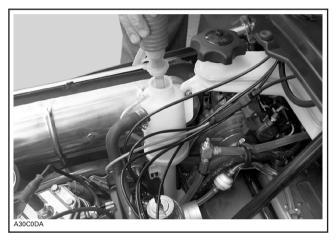
- Clockwise rotating drill
- Clockwise
   Main line

# LIQUID COOLING SYSTEM

599, 699 and 809 Engines



## INSPECTION


Check general condition of hoses and clamp tightness.

# DRAINING THE SYSTEM

# WARNING

Never drain or refill the cooling system when engine is hot.

To drain the cooling system, siphon the coolant mixture from the coolant tank. Use a primer pump with a plastic hose inserted as deep as possible into the lower hose.



When the coolant level is low enough, lift the rear of vehicle to drain the radiators.

# DISASSEMBLY AND ASSEMBLY

### 3,4, Sender and Plug

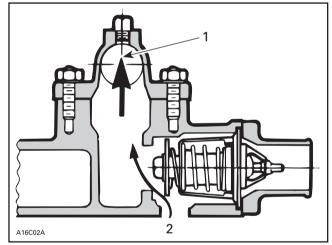
Apply Loctite 592 (P/N 413 7023 00) thread sealant on sender and plug to avoid leaks.

### 1, Pressure Cap

Check if the cap pressurizes the system. If not, install a new 90 kPa (13 PSI) cap (do not exceed this pressure).

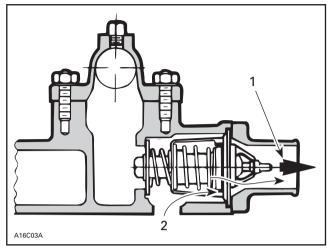
### 6,7, Radiator and Radiator Protector

Insert radiator protector into radiator C-rail and crimp C-rail at both ends. Refer to FRAME 09-03 for radiator removal.


#### 5, Thermostat

To check thermostat, put in water and heat water. Thermostat should open when water temperature reaches the following degree.

ENGINE	TEMPERATURE
All	42°C (108°F)


The thermostat is a double action type.

a. Its function is to give faster warm up of the engine by controlling a circuit; water pump — engine
— coolant tank. This is done by bypassing the radiator circuit.



TYPICAL — CLOSED THERMOSTAT AND COLD ENGINE

- To tank
   From cylinders
- b. When the liquid is warmed enough, the thermostat opens the circuit, water pump engine radiators coolant tank to keep the liquid at the desired temperature. (See the diagram of the exploded view).



TYPICAL — OPEN THERMOSTAT AND WARM ENGINE 1. To radiators 2. From cylinders

These 2 functions have the advantage of preventing a massive entry of cold water into the engine.

### 2, Coolant Tank

The coolant expands as the temperature (up to 90-100°C (195-212°F)) and pressure rise in the system. When the limiting system working pressure (cap) is reached (90 kPa (13 PSI)), the pressure relief valve in the pressure cap is lifted from its seat and allows coolant to flow through the overflow hose.

# COOLING SYSTEM REFILLING PROCEDURE

### **Recommended Coolant**

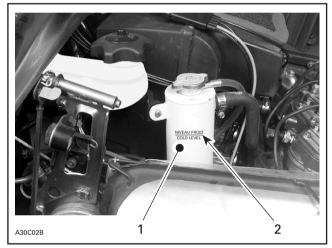
Use a blend of 60% antifreeze with 40% water. Do not reinstall pressure cap.

# CAUTION

To prevent rust formation or freezing condition, always replenish the system with 60% antifreeze and 40% water. Pure antifreeze without water freezes. Always use ethylglycol antifreeze containing corrosion inhibitors specifically recommended for aluminum engines.

### System Capacity

Refer to TECHNICAL DATA 10.


### **Refilling Procedure**

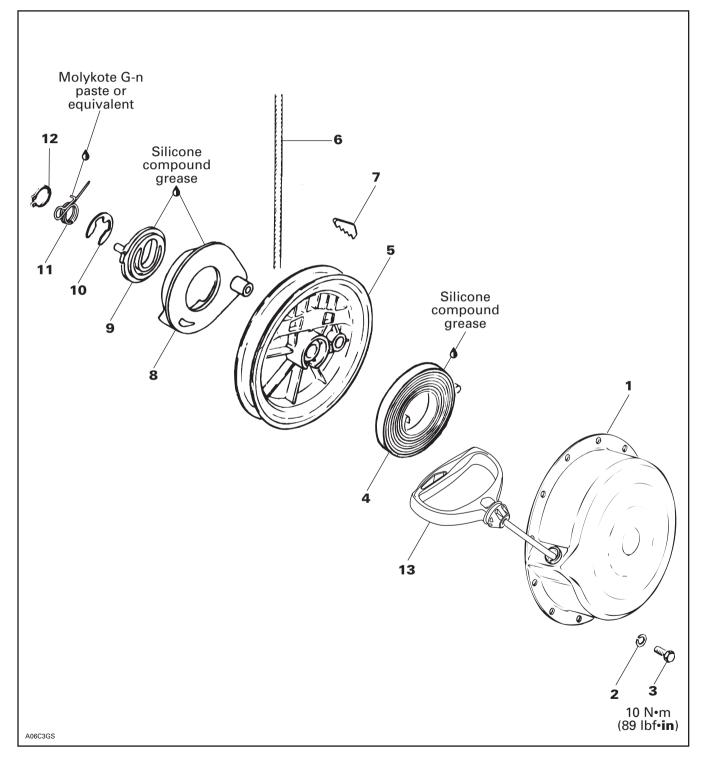
Lift front of vehicle until the tunnel is horizontal. With engine cold, refill coolant tank up to cold level line. Wait a few minutes then refill to line. Install pressure cap. Run engine until thermostat opens then stop engine. Refill up to line.

To make sure coolant flows through radiators, touch them by hand. They must feel warm.

Put back front of vehicle on the ground.

When engine has completely cooled down, recheck coolant level in coolant tank and refill up to line.




1. Coolant tank 2. COLD LEVEL line

Check coolant concentration (freezing point) with proper tester.

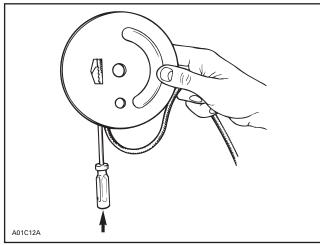
# Subsection 07 (REWIND STARTER)

# **REWIND STARTER**

All Models



## REMOVAL


Using a small screwdriver, extract rope knot from starter grip **no. 13**. Cut rope close to knot. Tie a knot near starter.

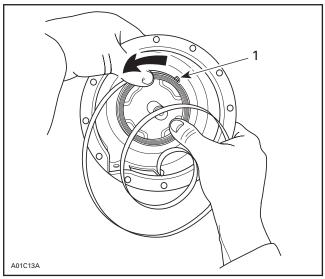
Remove screws **no. 3** and washers **no. 2** securing rewind starter **no. 1** to engine then remove rewind starter.

# DISASSEMBLY

To remove rope from rewind starter mechanism:

- First remove locking ring no. 12, locking spring no. 11, circlip no. 10, pawl lock no. 9 and pawl no. 8.
- Remove sheave no. 5 from starter housing no. 1.
- Disengage key no. 7 and pull out rope no. 6.




GENTLY TAP ON KEY

# ASSEMBLY

At assembly, position spring **no. 4** outer end into spring guide notch then wind the spring counterclockwise into guide.

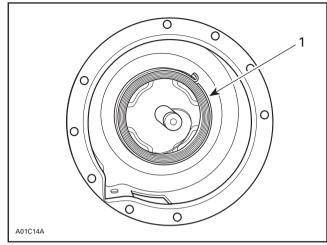
# WARNING

Since the spring is tightly wound inside the guide it may fly out when rewind is handled. Always handle with care.



1. Outer end into guide notch

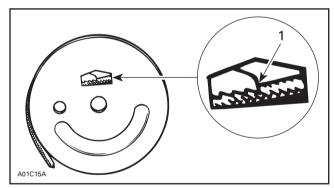
**NOTE:** Due to dust accumulation, rewind starter must be periodically cleaned, inspected and relubricated.


# CAUTION

It is of the utmost importance that the rewind starter spring(s) be lubricated periodically using specific lubricants. Otherwise, rewind starter component life will be shortened and/or rewind starter will not operate properly under very cold temperatures.

Lubricate spring assembly with silicone compound grease (P/N 420 8970 61) and position into starter housing as illustrated.

# CAUTION


This lubricant must NOT be used on rewind starter locking spring as it does not stay on under vibration.

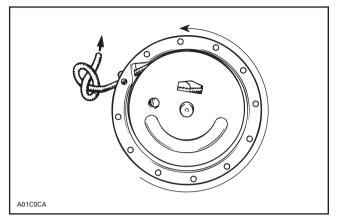


1. Grease inside spring guide



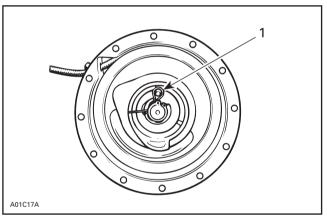
To install a new rope **no. 6**: insert rope into sheave **no. 5** orifice and lock it with the key **no. 7** as illustrated.




1. Push to lock

To adjust rope tension:

Wind rope on sheave and place rope sheave into starter housing making sure that the sheave hub notch engages in the rewind spring hook.


Rotate the sheave counterclockwise until rope end is accessible through starter housing orifice.

Pull the rope out of the starter housing and temporarily make a knot to hold it. One turn preload will give 7 turns of tension when fully extended.



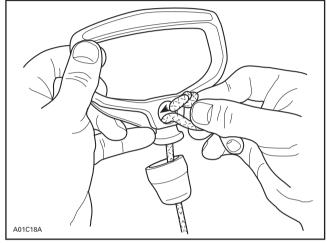
Position pawl no. 8, pawl lock no. 9 and circlip no. 10.

Install locking spring **no. 11** and lubricate with MOLYKOTE G-n paste from Dow Corning[®] or equivalent.



1. Spring coated with MOLYKOTE G-n paste

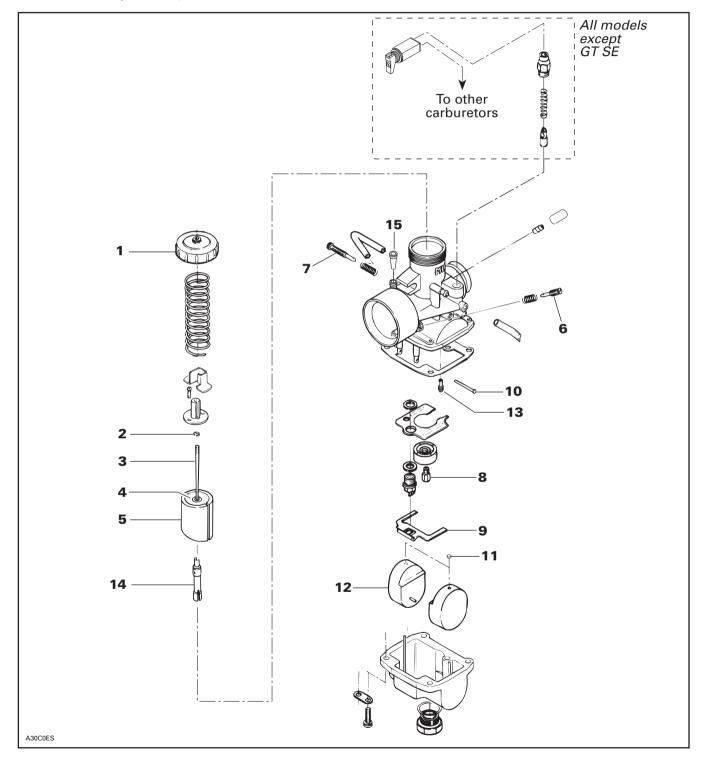
Install locking ring.


# CAUTION

This lubricant must NOT be used on rewind springs as it does not stay on when dry.

## INSTALLATION

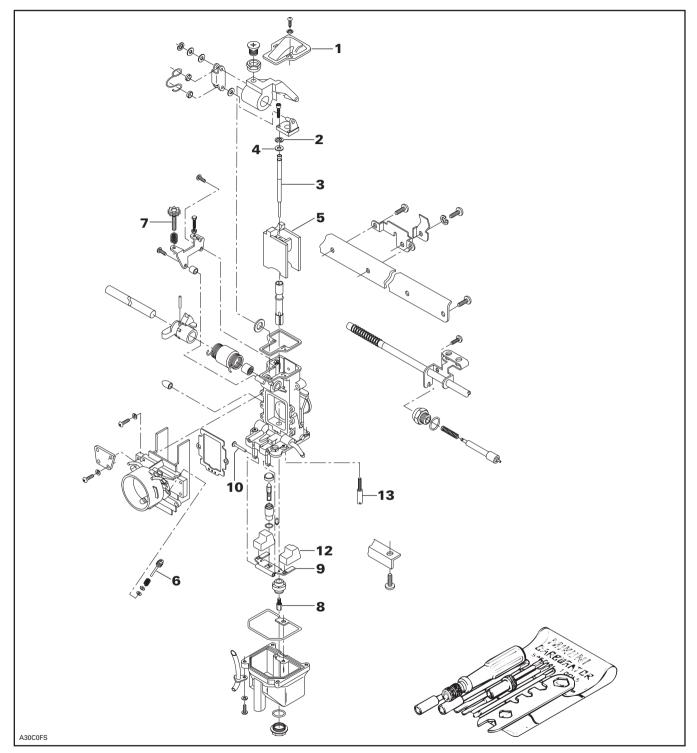
Reinstall rewind starter assembly on engine.


Prior to installing starter grip **no. 13** on new rope, it is first necessary to fuse the rope end with a lit match. Pass rope through starter grip and tie a knot in the rope end. Fuse the knot with a lit match then insert rope end down and pull the starter grip over the knot.



TYPICAL

# **CARBURETOR AND FUEL PUMP**

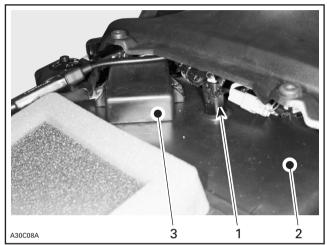

Formula Series, GT 700/SE and Mach 1 Series



### Section 04 ENGINE

Subsection 08 (CARBURETOR AND FUEL PUMP)

#### Mach Z Series




# REMOVAL

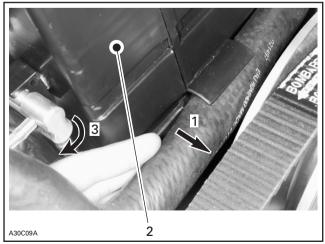
Remove air silencer from left hand side.

#### Grand Touring SE Only

Unplug air temperature sensor connector from air intake silencer and remove DPM module, as shown in the next photo.



- 1. Air temperature sensor
- 2. Air intake silencer 3. DPM module
- 3. DPM module


#### All Models

Detach hose from air intake silencer, as shown in the next photo.

#### Grand Touring SE Only

Then twist DPM manifold and detach from air intake silencer.

#### All Models



^{1.} Detach hose

- 2. Air intake silencer
- 3. Detach DPM manifold (GT SE only)

Unhook latches then, remove air intake silencer. Disconnect fuel inlet lines.

Unplug DPM solenoid connectors. Disconnect air pump inlet at DPM manifold.

#### All Models Except Mach Z Series

Unscrew carburetor cover **no. 1** then pull out throttle slide **no. 5** from carburetor.



Exercise care when handling throttle slide. Scratches incurred may cause throttle slide to stick open in operation.

Disconnect throttle cable from throttle slide.

#### Mach Z Series

Disconnect throttle cable from throttle shaft.

#### All Models

Remove carburetors from engine.

## CLEANING AND INSPECTION

The entire carburetor should be cleaned with a general solvent and dried with compressed air before disassembly.



Heavy duty carburetor cleaner may be harmful to the float material and to the rubber parts, O-rings, etc. Therefore, it is recommended to remove those parts prior to cleaning.

Carburetor body and jets should be cleaned in a carburetor cleaner following manufacturer's instructions.

# WARNING

Solvent with a low flash point such as gasoline, naphtha, benzol, etc., should not be used as they are flammable and explosive.

### 15, Filter

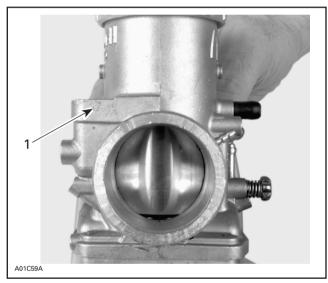
Check for clogged filter. Clean or replace as required.

Check inlet needle tip condition. If worn, the inlet needle and seat must be replaced as a matched set.

#### Section 04 ENGINE Subsection 08 (CARBURETOR AND FUEL PUMP)

NOTE: Install needle valve for snowmobile carburetor only. It is designed to operate with a fuel pump system.

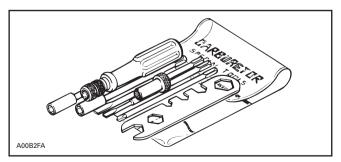
Check throttle slide for wear. Replace as necessary.


Check idle speed screw straightness. Replace as necessarv.

Check for fuel soaked into float no. 12; replace as necessary.

Check float for cracks or other damages affecting free movement; replace as necessary.

## **IDENTIFICATION**


All carburetors are identified on their body.



1. Identification: 34-482

# DISASSEMBLY AND ASSEMBLY

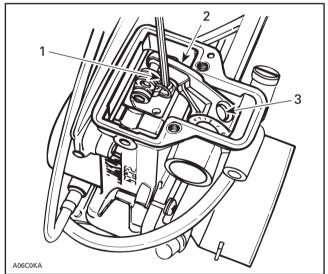
NOTE: To ease the carburetor disassembly and assembly procedures it is recommended to use carburetor tool kit (P/N 404 1120 00).



### 2.3, E-clip and Needle

#### All Models Except Mach Z Series

Remove screws from needle retaining plate to withdraw the needle.


#### Mach Z Series

To remove needle or to change its position or to remove throttle slide, remove caburetor cover.

Except for MAG side carburetor, unscrew locking screw and adjusting nut form throttle shaft.

Move arm aside just enough for unscrewing Allen screw retaining throttle slide.

For MAG side carburetor, raise throttle slide half way then unscrew Allen screws.

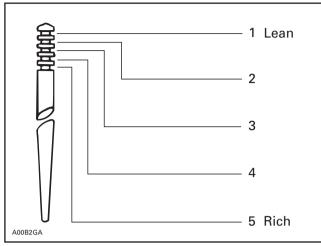


Allen screw 1

Arm moved aside

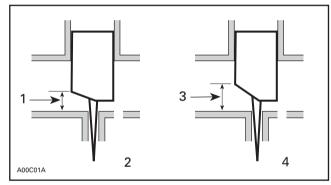
2. 3. Locking screw and adjusting nut removed

#### All Models


The position of the needle in the throttle slide is adjustable by means of an E-clip inserted into 1 of 5 grooves located on the upper part of the needle. Position 1 (at top) is the leanest, 5 (at bottom) the richest.

NOTE: The last digit of the needle identification number gives the recommended position of the E-clip from the top of the needle.

#### Example: 6DH4-3




Recommended position. of the E-clip from top





The size of the throttle slide cut-away affects the fuel mixture between 1/8 to 1/2 throttle opening.

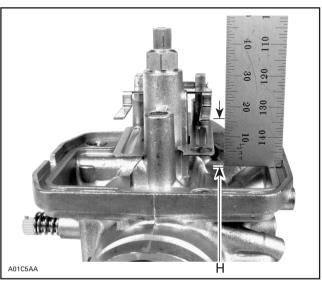


- 1. Low cut-away
- Rich mixture
   High cut-away
- *3. High cut-away 4. Lean mixture*

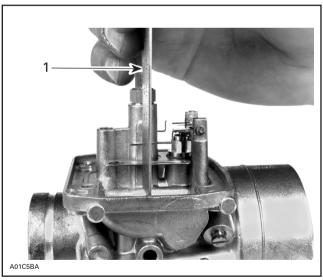
### 8, Main Jet

The main jet installed in the carburetor has been selected for a temperature of -20°C (0°F) at sea level. Different jetting can be installed to suit temperature and/or altitude changes. Always check spark plug tip and/or piston dome color to find out correct jetting.

### CARBURETOR FLOAT LEVEL ADJUSTMENT


### 9,10, Float Arm and Float Arm Pin

Correct fuel level in float chamber is vital toward maximum engine efficiency. To check for correct float level proceed as follows:


- Make sure that float arm is symetric not distored.
- Remove float bowl and gasket from carburetor.

#### All Models Except Mach Z Series

With carburetor chamber upside-down on a level surface, measure height H between bowl seat and top edge of float arm. Keep ruler perfectly vertical and in line with main jet hole.

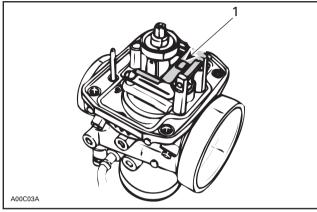


**TYPICAL** H: Float height (including float arm thickness)



1. Ruler vertical and in line with main jet

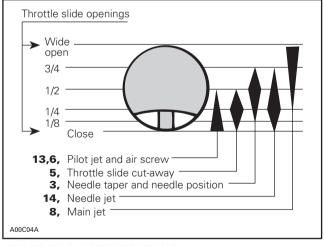
#### Mach Z Series


Do not turn carburetor up side down. Measure float arm height when it just touches needle valve without moving it.

CARBURETOR	FLOAT HEIGHT H	
MODEL	± 1 mm	(± .040 in)
All VM	18.1	(.713)
All TM	20.0	(.787)

#### Section 04 ENGINE Subsection 08 (CARBURETOR AND FUEL PUMP)

### To Adjust Height H


- Bend the contact tab of float arm until the specified height is reached.



1. Contact tab

The following illustration shows the part of the carburetor which begins and stops to function at different throttle slide openings.

Note that the wider part of symbol corresponds to the opening mostly affected. For instance, throttle slide cut-away begins to function at closed position but it is most effective at 1/4 opening and decreases up to 1/2 opening.



VIEW FROM AIR INTAKE OPENING

**NOTE:** For fine tuning refer to TECHNICAL DATA 10 and to SPARK PLUG 06-03.

**NOTE:** For high altitude regions, the *High Altitude and Sea Level Technical Data Booklet* (P/N 484 0686 00 and 484 0545 00 for binder) gives information about calibration according to altitude and temperature.

# INSTALLATION

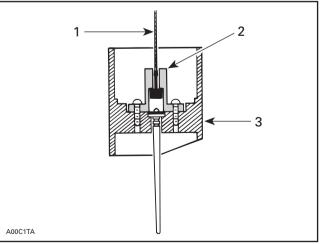


#### Never allow throttle slide(s) to snap shut.

To install carburetor on engine, inverse removal procedure.

However, pay attention to the following:

 Inspect throttle cable and housing prior to installation.


On applicable models, make sure to align tab of carburetor and air intake silencer (if applicable) with notch of adaptor(s). On applicable models, install adaptor with up mark facing up.

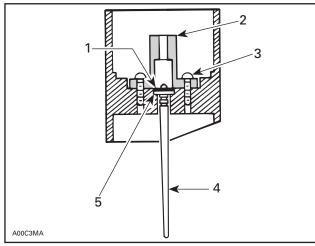
# CAUTION

The rubber flange must be checked for cracks and/or damage. At assembly, the flange must be perfectly matched with the air intake manifold or severe engine damage will occur. Beside do not interchange carburetors, the jetting may be different on each side. A red dot is printed on MAG carburetor (blue on PTO side) and on the high tension coil support. Match the carburetor and the support dots.

Hook throttle cable into the needle retainer plate.

**NOTE:** Do not obstruct hole in throttle slide when installing needle retaining plate. This is important to allow air escaping through and thus allowing a quick response.

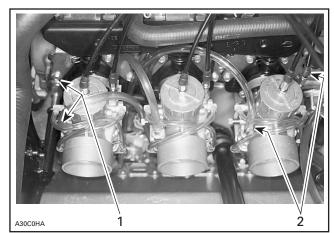



CENTER POST TYPE

- 1. Throttle cable
- 2. Needle retaining plate
- 3. Throttle slide

Make sure the nylon packing **no. 4** is installed on all applicable throttle slides.

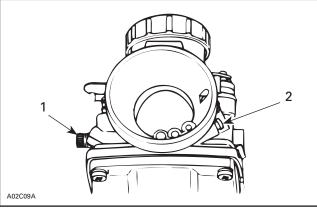
# **CAUTION**


Serious engine damage can occur if this notice is disregarded.



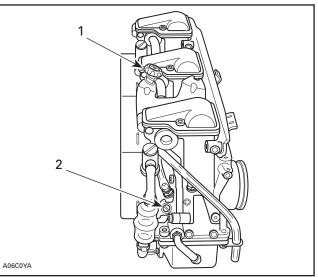
CENTER POST TYPE

- 1
- E-clip Needle retaining plate Screw 2
- 3.
- A. Needle
   5. Nylon packing


Match hose colored dot with the one on coil support.






### CARBURETOR ADJUSTMENTS

#### All Models Except Mach Z Series



1. Idle speed screw 2. Air screw

Mach Z Series



**TYPICAL** 

Idle speed screw

Air screw (on each carburetor) 2.

### 6, Air Screw Adjustment

#### All Models

Completely close the air screw (until a slight seating resistance is felt) then back off as specified.

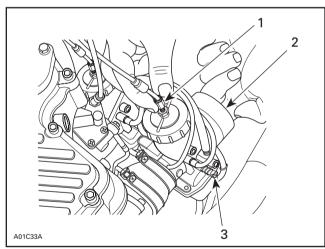
Turning screw in clockwise enrichners mixture and conversely, turning it out counterclockwise leans mixture.

Refer to TECHNICAL DATA 10 for the specifications.

#### Section 04 ENGINE Subsection 08 (CARBURETOR AND FUEL PUMP)

#### **Carburetor Synchronization**

#### All Models Except Mach Z Series


All carburetor slides must start to open at the same time.

Completely unscrew idle speed screw on all carburetors.

Unlock cable adjustment lock nut then screw in adjuster until throttle slide bottoms out. Proceed the same for all carburetors.

Unscrew cable adjuster to eliminate all cable play but without raising throttle slide. Proceed with care on all carburetors then tighten jam nuts. All carburetor slide must start to open at the same time, depress throttle lever to check it and turn cable adjuster as required.

Check throttle slide position at wide open throttle. Throttle slide must be flush or 1 mm (.040 in) lower than carburetor **outlet** bore. At that same position, check that throttle slide does not contact carburetor cover. Turn cable adjuster and recheck synchronization.

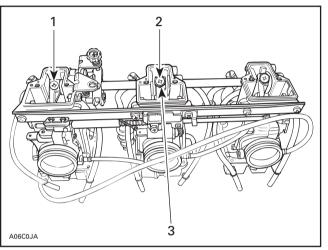


#### TYPICAL

- 1. Screw in and out until no cable free play exists
- 2. Check that throttle side does not move
- 3. Idle speed screw completely unscrewed

# **CAUTION**

If the throttle slide rests against the carburetor cover at full throttle opening, this will create too much strain and may damage the throttle cable or other components in throttle mechanism.


#### Mach Z Series

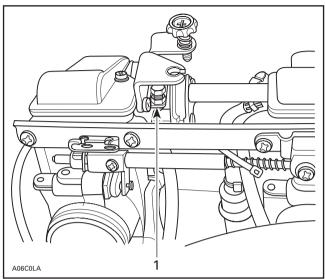
All 3 carburetor slides must start to open at the same time.

Visually check for simultaneous opening.

To adjust, remove carburetor covers, loosen locking screws (except for MAG carb.) and turn adjusting nuts accordingly.

Tighten locking screws and recheck synchronization.




#### TYPICAL

- 1. No adjustment on MAG side carburetor
- 2. Locking screws
- 3. Adjusting nut

**NOTE:** When using a vacuum gauge or a cylinder balancer or a Unisyn tool for checking carburetor synchronization, always remove 3 carburetor covers.

### Full Throttle Adjustment

To avoid stress on throttle cable when throttle lever is against handlebar grip, stop screw must not contact stopper. There must be slight free play between stop screw and its stopper.



TYPICAL - FULL THROTTLE POSITION 1. Free play between stop screw and its stopper

### Throttle Slide Adjustment

#### All Models Except Mach Z Series



Ensure the engine is turned OFF, prior to performing the throttle slide adjustment.

For maximum performance, correct carburetor throttle slide adjustment is critical.

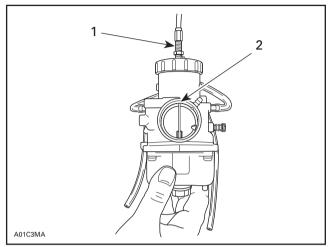
The following method should be used with engine turned off:

- Idle speed screw must be completely unscrewed. It must not contact throttle slide.

Turn the idle speed screw clockwise until it contacts the throttle slide then continue turning 2 additional turns.

Repeat on the other carburetors. This will ensure identical throttle slide preliminary idle setting. Recheck carburetor synchronization. Adjust idle by turning all idle speed screws of the same amount.

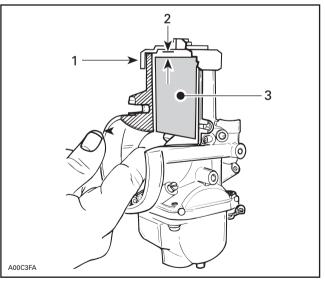
# CAUTION


Make sure all carburetors start to operate simultaneously.

# CAUTION

The oil injection pump adjustment must be checked each time carburetor is adjusted. Refer to OIL INJECTION SYSTEM 04-05.

#### All Models Except Mach Z Series


Throttle slide must be flush or 1.0 mm (.040 in) lower than the top of carburetor oulet bore (enaine side).



#### THROTTLE LEVER AGAINST HANDLE GRIP

- Throttle cable adjuster Throttle slide flush or 1.0 mm (.040 in) lower than carburetor oulet bore (engine side)

Once carburetor adjustment is performed, check that with the throttle lever fully depressed, there is a free play between the carburetor cover and top of throttle slide.



THROTTLE LEVER AGAINST HANDLE GRIP

- 1. Cover
- Free play 2. 3. Throttle slide

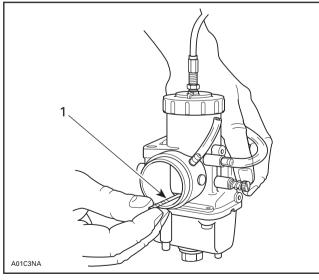
#### Section 04 ENGINE Subsection 08 (CARBURETOR AND FUEL PUMP)

# WARNING

This gap is very important. If the throttle slide rests against the carburetor cover at full throttle opening, this will create too much strain and may damage the throttle cable or other components in throttle mechanism.

Recheck carburetor synchronization.

# CAUTION


The oil injection pump adjustment must be checked each time carburetor is adjusted. Refer to OIL INJECTION SYSTEM 04-05.

### PRELIMINARY IDLE SPEED ADJUSTMENT

Adjust throttle slide height (see table) by turning idle speed screw **no. 7**.

Final adjustment (engine running at idle speed) should be within 1/2 turn of idle speed screw from preliminary adjustment.

MODEL	THROTTLE SLIDE HEIGHT mm (in)
All	1.2 (.047)



TYPICAL

1. Drill bit used as gauge for throttle slide height

### IDLE SPEED FINAL ADJUSTMENT

#### 7, Idle Speed Screw

Start engine and allow it to warm then adjust idle speed to specifications by turning **idle speed** screw clockwise to increase engine speed or counterclockwise to decrease it.

**NOTE:** Turn adjustment screw the same amount on all carburetors to keep carburetors synchronized.

Refer to TECHNICAL DATA 10 for the specifications.

# CAUTION

Do not attempt to set the idle speed by using the air screw. Severe engine damage can occur.

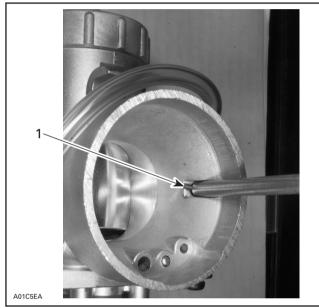
# CHOKE

#### All Models Except Mach Z Series

#### **Choke Plunger Adjustment**

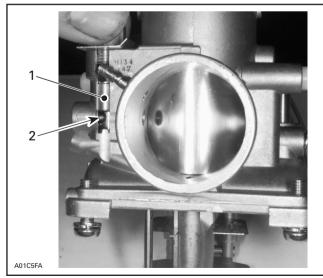
Set choke lever to fully open position.




CHOKE LEVER - FULLY OPEN POSITION

Insert choke plunger tool into choke air inlet of each carburetor.

# CAUTION

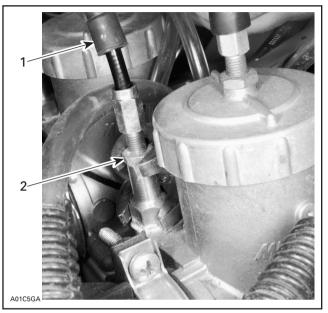

Make sure that tool stopper is properly lean on venturi recess. This will ensure that tool tip is properly seated under choke plunger, as shown on the next photos.

**NOTE:** Choke plunger tool can be used both sides depending on carburetor type. Use larger diameter for Mikuni 38 mm and smaller diameter for Mikuni 34 mm.



AIR SILENCER SIDE SHOWN

1. Tool stopper properly leaned on venturi recess

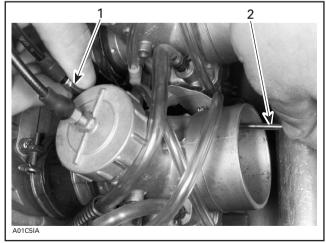



ENGINE SIDE SHOWN (CUT-AWAY)

- 1. Choke plunger
- 2. Tool properly seated under choke plunger

If tool tip does not seat under choke plunger, adjust as follows:

Lift up protector cap and loosen choke cable lock nut, as shown in the next photo.




1. Lift up protector cap 2. Loosen lock nut

Set choke lever to fully open position.

Turn choke cable adjustment nut by hand until tool properly seats under choke plunger.

**NOTE:** A light pressure should be needed to positioned tool under plunger.



- 1. Choke cable adjustment nut
- 2. Choke plunger tool

Tighten choke cable lock nut and reinstall protector cap.

#### **Section 04 ENGINE** Subsection 08 (CARBURETOR AND FUEL PUMP)

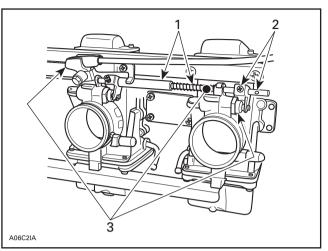
Set choke lever to close and open positions and ensure that tool properly seats under plunger **only** when lever is set to fully open position.

Set choke lever to close position and, by pulling and pushing choke lever, make sure there is no tension on cable (free play).



CHOKE LEVER — CLOSED POSITION

#### Mach Z Series


#### Choke Rod

Check for free movement of choke rod. If hard to slide, remove 3 plunger ferrules then choke rod.

Thoroughly clean choke rod and its mounting hole on each carburetor.

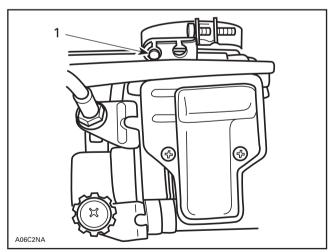
Remove plunger grommet from each carburetor. Fill the grommet interior with dielectric grease (P/N 413 7017 00). Reinstall the grommets.

Apply dielectric grease (P/N 413 7017 00) on choke rod and reinstall it with its return spring and spacer on PTO side. Make sure that ferrule screws align with each rod hole. Tighten screws to 2 N•m (18 lbf•in).



1. Spacer and spring on PTO side

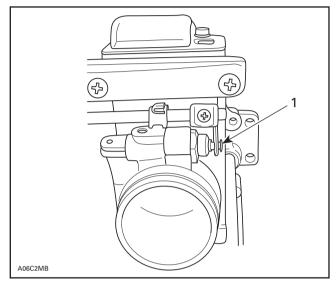
2. Ferrule screw aligned with rod hole


3. Dielectric grease

Apply dielectric grease (P/N 413 7017 00) on cable housing end.

All 3 plungers must start to open at the same time. Bend ferrule end as required. Do not change position of ferrule on rod. Its screw must remain in line with choke rod hole.

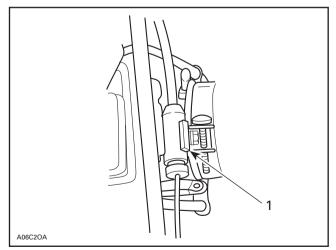
#### Choke Cable Adjustment


Choke cable barrel must be in left hole of sliding rod lever.



1. Cable barrel in left hole

Air intake silencer must be reinstalled and choke cable properly routed before finalizing adjustment.


Adjust choke cable to obtain a maximum gap of approximately 0.3 mm (.012 in) between tab and plunger when choke lever is not activated.

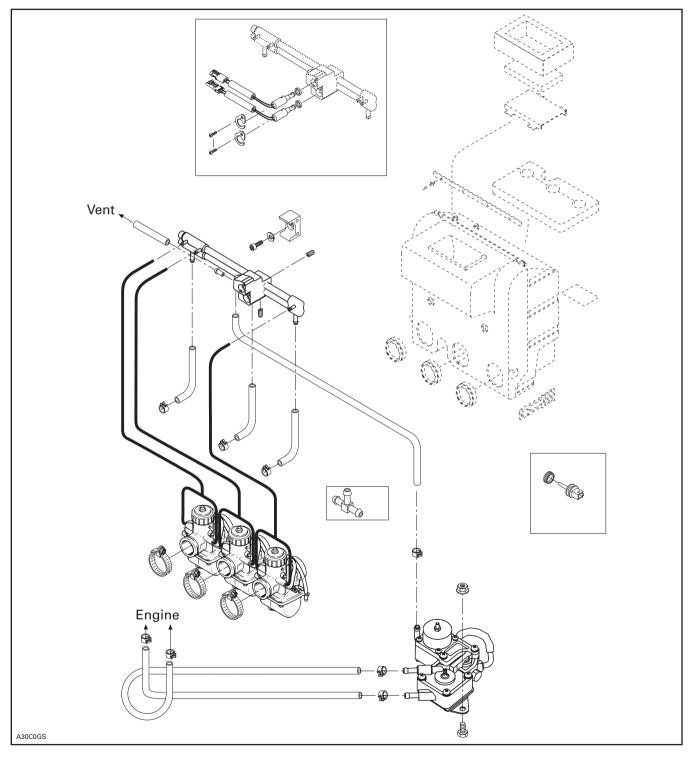


1. 0.3 mm (.012 in) gap maximum

**NOTE:** If there is no gap between tab and plunger, a rich condition will occur and throttle response will be affected; if the gap is too great, the plunger stroke will be reduced causing poor cold engine starting.

If adjustment is required, loosen cable support on middle carburetor to change choke cable position.




1. Choke cable support

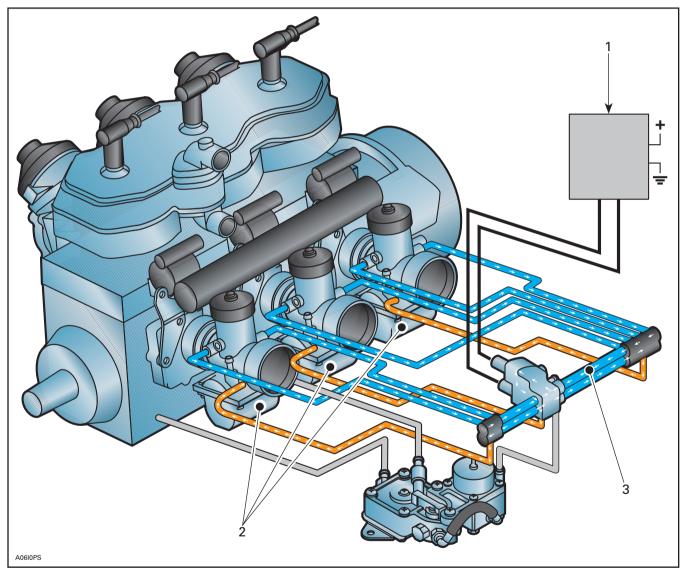
After adjustment, retighten screw.

#### Section 04 ENGINE Subsection 08 (CARBURETOR AND FUEL PUMP)

## DPM

#### Grand Touring SE




# **PURPOSE**

Calibrate the air/fuel mixture in order to optimize the engine output while reducing fuel consumption.

# **METHOD**

The system makes the pressure vary within the carburetor bowl.

# **OVERALL SYSTEM OPERATION**



- DPM module
   Carburetor bowls
   Distribution gallery (upper tube)

#### Introduction

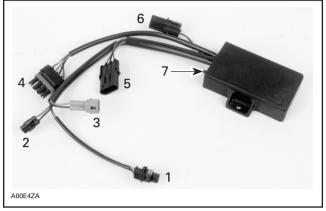
The engine is being started using the electrical or the manual starter.

The DPM module increases pressure within all 3 carburetor bowls thus the air/fuel mixture is enriched. This is what we call the enrichment mode.

As soon as the spark plug gives off its first spark, the DPM module calculates the enrichment time and rate based on the engine temperature.

Approximately one minute after starting the engine, the module goes from enrichment to standby mode.

Carburetor bowls then receive the atmospheric pressure, and the air/fuel mixture is identical to that of carburetors without the digital performance management (DPM) system.


If engine speed is increased to approximately 3000 RPM, the module goes from standby to compensation mode. The air temperature must exceed -20°C (-4°F) and the air pressure must be lower than 1000 mbar.

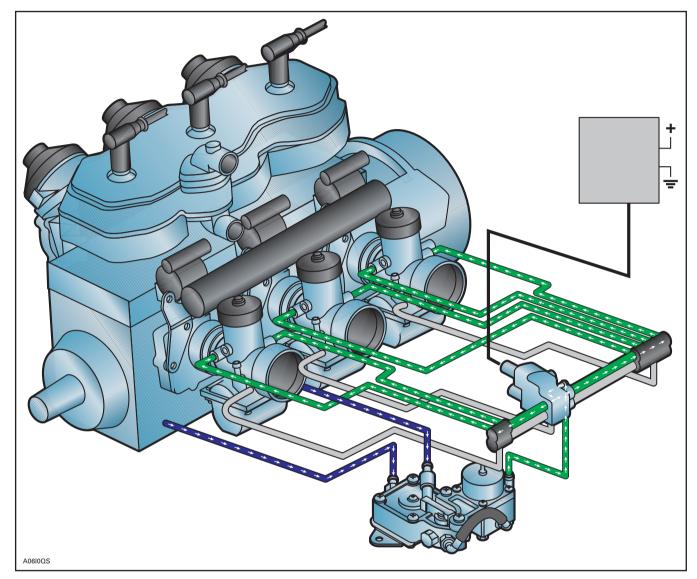
Float bowls are now under vacuum and the air/ fuel mixture is leaner.

**NOTE:** Both modes can never operate at the same time. The system either makes the mixture richer or leaner. Or, the mixture remains unchanged when module is on standby.

### DPM MODULE OPERATION

General




- Engine temperature sensor, 3-09 housing 1.
- 2. Enrichment solenoid, 3-11 housing З.
  - Compensation solenoid, 3-10 housing Power supply (+ and -), signal for MPEM, air temperature sensor,
- 4. 4-04 housina
- 5. Enrichment switch, 4-08 housing
- Communication port (reserved to manufacturer), 4-06 housing 6. Atmospheric pressure nipple

Direct current is supplied to the module which is protected with a 1 A fuse.

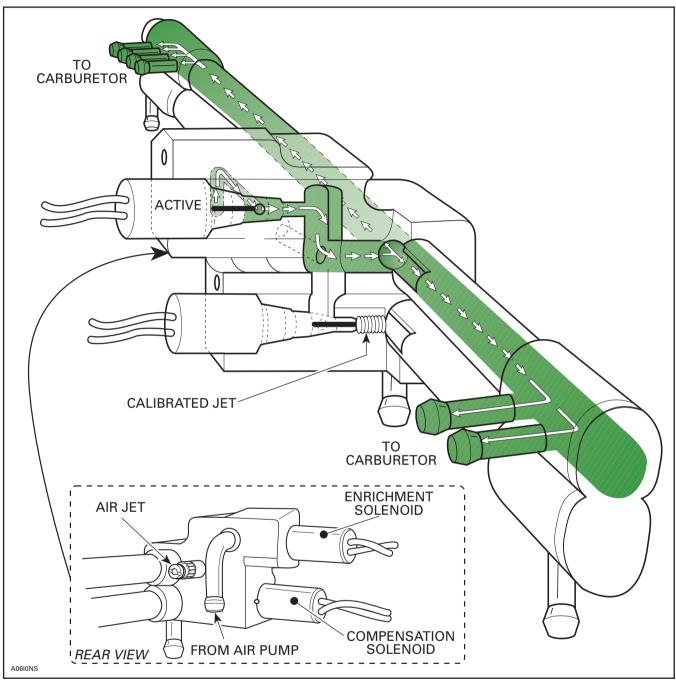
BLACK/GREEN and WHITE/GRAY wires (4-06 housing) are used for programming by the manufacturer. Nothing must be plugged to this housing.

# Subsection 08 (CARBURETOR AND FUEL PUMP)

#### Enrichment Mode (starting)



When turning the ignition key to the ON position, the module is energized and goes on standby. The module uses no electricity when on standby.


Once the engine begins to turn (using either the electrical or rewind starter), the module receives pulses through the MPEM (multi-purpose electronic module) ignition system GRAY/GREEN wire.

The DPM module then comes on by reading the engine temperature through the sensor located on the cylinder head. The DPM module calculates the enrichment solenoid opening time and the enrichment rate according to the temperature. The air/fuel mixture is then enriched in order to facilitate starting.

The system pressurizes all 3 carburetor bowls in order to enrich the air/fuel mixture. This is accomplished with the help of an air pump.

#### Section 04 ENGINE

Subsection 08 (CARBURETOR AND FUEL PUMP)

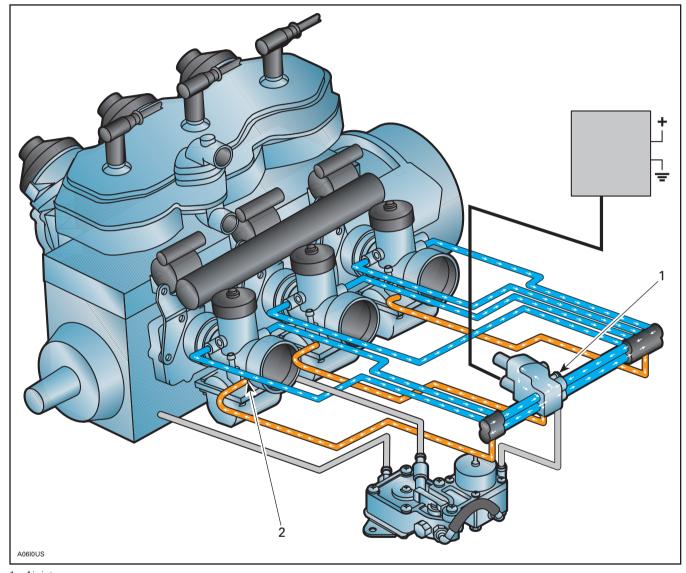


#### TYPICAL

This enrichment process of the air/fuel mixture takes place at start-up and during engine warm-up, and it depends on engine temperature.

The higher the engine temperature upon start-up, the leaner the mixture.

This enrichment progressively decreases and takes place during no more than approximately 1-1/2 minutes. Once the engine is started, the module reduces the solenoid duty cycle. The warmer the engine, the shorter the enrichment mode.


If the throttle opening exceeds one quarter, the enrichment mode is interrupted during the starting process, which allows unflooding the engine.

However, the enrichment mode is restored when releasing the throttle.

Following the enrichment mode, carburetors are operating normally, i.e. without additional pressure within bowls.

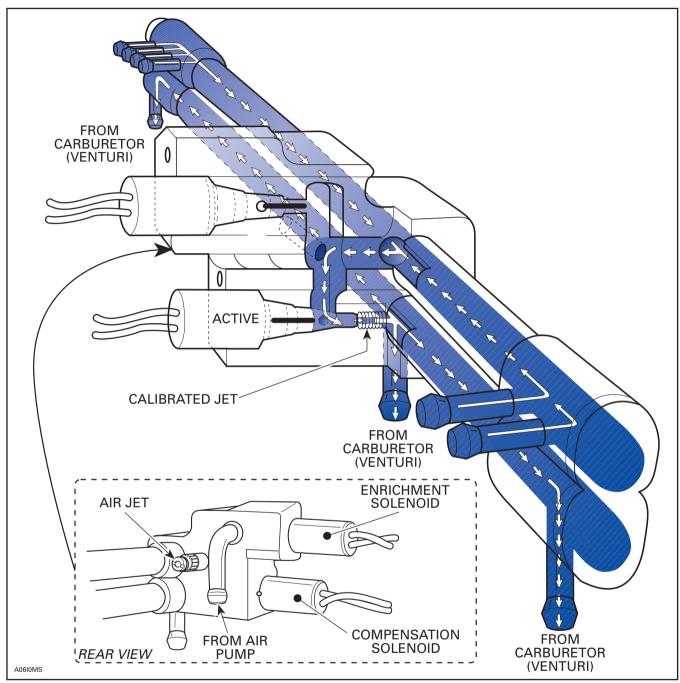
NOTE: Calibration is exactly the same on engines with a DPM Module and those without.

#### **Compensation Mode**



Air jet
 Needle jet air inlet

Three conditions must be met for the compensation mode to operate:


1. The engine must operate at over 3000 RPM. Signal received by the GRAY/GREEN wire.

- 2. The air temperature must exceed -20°C (-4°F).
- 3. The atmospheric pressure must be lower than 1000 mbar.

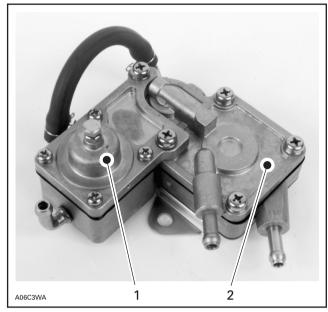
The system brings all 3 carburetor bowls under vacuum in order to make the air/fuel mixture leaner. The required vacuum is produced within the needle jet air inlet.

#### Section 04 ENGINE

Subsection 08 (CARBURETOR AND FUEL PUMP)



#### TYPICAL


The compensation ratio will depend on the air temperature and the atmospheric pressure.

The higher the air temperature, the leaner the air/fuel mixture.

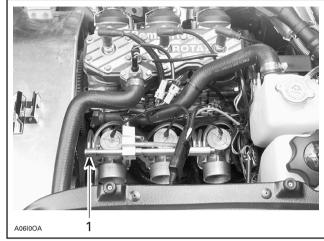
The lower the atmospheric pressure, the leaner the air/fuel mixture.

**NOTE:** The atmospheric pressure decreases as the altitude increases.

### AIR PUMP OPERATION



1. Regulator 2. Pump

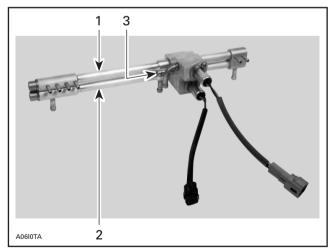

This pump supplies the distribution gallery through a unique pipe.

The pump diaphragm is activated by the alternating pressure/vacuum within the engine crankcase. Two pipes connect the crankcase (cylinders nos. 2 and 3) to the pump.

A regulator within the pump stabilizes the pump pressure.

Since the pump pressure is insufficient upon starting, the regulator is fed directly by the crankcase pressure.

### DPM MANIFOLD OPERATION



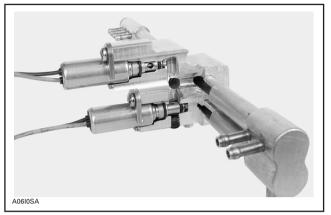

TYPICAL 1. Manifold

The DPM manifold consists of 2 tubes. Depending on the mode, the upper tube (distribution gallery) distributes pump pressure or vacuum to each bowl through 2 pipes. The passage is then opened by the enrichment or the compensation solenoid, depending on the mode.

The lower tube (vacuum collector) receives the vacuum created by each carburetor within the needle jet air inlet.

An air jet also allows the atmospheric pressure to enter.




TYPICAL — MANIFOLD ASS'Y

1. Upper tube: distribution gallery

2. Lower tube: vacuum collector

3. Air jet

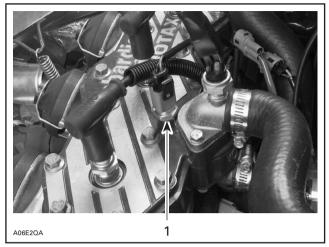
#### Section 04 ENGINE Subsection 08 (CARBURETOR AND FUEL PUMP)





### **Enrichment Solenoid**

#### **Solenoid Operating Principle**


A solenoid is a winding coiled in order to produce a magnetic field. A metal rod crosses the coil and cuts the magnetic field. Each time the coil is activated, the magnetic field attracts the rod. If the supply current is interrupted, a spring pushes the rod.

#### Solenoid Function within the DPM System

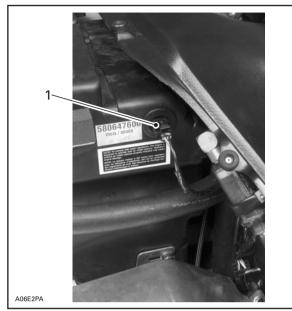
The DPM module turns the solenoid on and off 10 times per second, which means that it operates at 10 cycles/second or 10 Hertz (Hz). The solenoid therefore opens and closes 10 times per second, thus allowing the pump pressure to reach the distribution gallery (upper tube).

For the pressure to vary within the bowls, the solenoid is activated in part by the DPM during each cycle. This is what is called the duty cycle. In other words, the solenoid will not open throughout the whole cycle. The duty cycle depends on the engine temperature.

The colder the engine, the longer the duty cycle. Therefore, the solenoid will stay open longer, thus giving way to pressure.



1. Engine temperature sensor


### **Compensation Solenoid**

**NOTE:** Read *Operating Principle of a Solenoid* at the beginning of the chapter concerning the **Enrichment Solenoid**.

The DPM module turns the solenoid on and off 10 times per second, which means that it operates at 10 cycles/second or 10 Hertz (Hz). The solenoid therefore opens and closes 10 times per second, thus allowing the pump pressure to reach the distribution gallery (upper tube).

For the vacuum to vary within the bowls, the solenoid is activated in part by the DPM module during each cycle. This is what is called the duty cycle. In other words, the solenoid will not open throughout the whole cycle. The duty cycle depends on the air temperature and the atmospheric pressure.

The warmer the air, the longer the duty cycle. Therefore, the solenoid will stay open longer, thus giving way to vacuum. The same applies when the altitude increases.

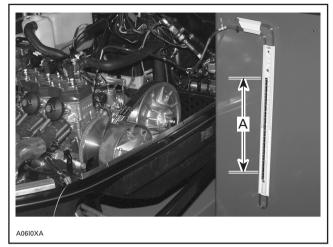


1. Air temperature sensor

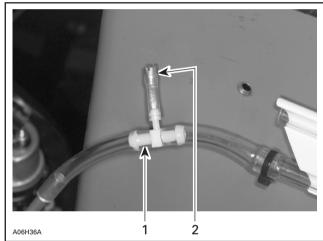
## Manifold Air Jet

This jet allows the atmospheric pressure to reach carburetor bowls when the DPM is on standby.

See manifold ass'y illustration.


## **TESTING PROCEDURE**

#### Pump


#### **Pressure Test**

The pump must create a minimum pressure of  $400 \pm 50$  mm of water.

Connect a jet (P/N 270 5001 57) to a hose then connect that little tube to the small nipple of a T-fitting (P/N 414 2225 00). Install that T-fitting between a U-tube and air pump outlet.



A.  $400 \pm 50 \text{ mm of water}$ 



1. T-fitting (P/N 414 2225 00) 2. Jet (P/N 270 5001 57)

Start engine and note water height.

## DPM Module

Solenoids are supplied by the DPM module. If this module does not work, there will be no current on the RD/BL and BK connectors (3-10 housing); and on the RD/GN and BK connectors (3-11 housing).

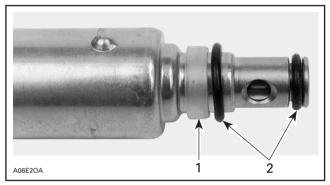
Unplug upper solenoid wire (enrichment). Connect a good solenoid to module output connector. Use adaptor (P/N 529 0338 00) as required.

# CAUTION

Do not disconnect both DPM connectors. The compensation solenoid must remain plugged.

#### Section 04 ENGINE Subsection 08 (CARBURETOR AND FUEL PUMP)

Disconnect engine temperature sensor connector. The DPM module now operates as though the engine temperature was -20°C (-4°F) to allow maximum mixture enrichment.


Start the engine and observe the solenoid. A vibrating solenoid indicates that the module is in good working order. If not, replace the module and repeat test.

#### Solenoid

#### Static Test

Disassemble the solenoid and connect it to a 12 V battery. The solenoid must open and stay open. Repeat test several times.

At reassembly, ensure that solenoid seals are in place.



1. Plastic seal

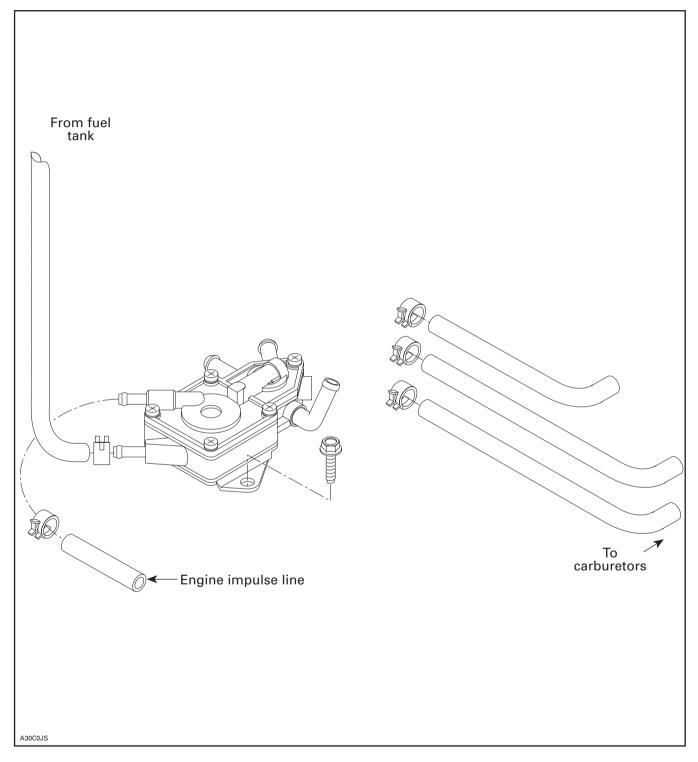
#### 2. O-rings

#### **Dynamic Test**

When checking the enrichment solenoid, disconnect engine temperature sensor connector. The DPM module now operates as though the engine temperature was -20°C (-4°F) to allow maximum mixture enrichment.

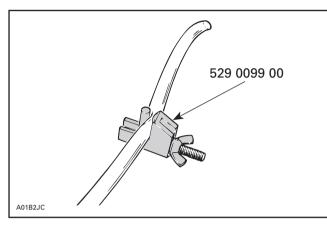
Remove the solenoid, hold it in hand and start the engine.

For the enrichment solenoid, check if it vibrates as soon as the engine is started.


For the compensation solenoid, the air temperature sensor must be at room temperature. Operate the engine at 3500 RPM. The solenoid must vibrate.

#### Temperature Sensor (air and engine)

At room temperature 20°C (68°F), the sensor resistance must be 2500  $\Omega$  ± 300.


## **FUEL PUMP**

#### All Models



## REMOVAL

Install a hose pincer (P/N 529 0099 00) on fuel supply line close to pump inlet.



Disconnect fuel outlet line(s).

Disconnect impulse line.

Remove screws securing fuel pump support to chassis.

## PUMP VERIFICATION

Check fuel pump valves operation as follows:

Connect a clean plastic tubing to the inlet nipple and alternately apply pressure and vacuum with pump of leak test kit. The inlet valve should release with pressure and hold under vacuum.

Repeat the same procedure at the outlet nipple. This time the outlet valve should hold with pressure and release under vacuum.

**NOTE:** Plug 2 outlets with finger while checking outlet valve.

Check impulse diaphragm and gasket on highsupply fuel pump with twin outlets as follows:

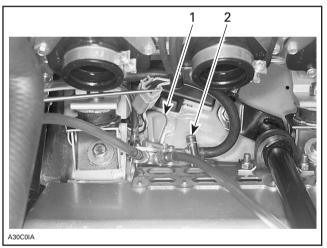
Connect a clean plastic tubing to the impulse nipple and plug vent hole on top cover. Either apply pressure or vacuum. The diaphragm/gasket must not leak.

## CLEANING AND INSPECTION

The entire pump should be cleaned with general purpose solvent before disassembly.

Fuel pump components should be cleaned in general purpose solvent and dried with compressed air.

# WARNING


Solvent with a low flash point such as gasoline, naphtha, benzol, etc., should not be used as each is flammable and explosive.

Inspect diaphragm. The pumping area should be free of holes, tears or imperfections. Replace as needed.

# INSTALLATION

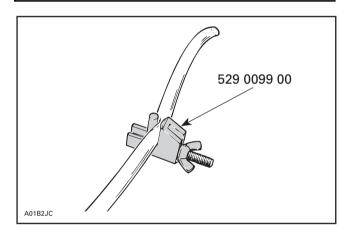
To install, first insert a pick in bottom hole of pump support to hold it in place.

Fasten top screw using a long socket with grease inside to restrain screw.



Pick inserted in pump support bottom hole
 Socket on top screw head to be fastened




Pressure test to ensure there is no leak in fuel system.

# FUEL TANK AND THROTTLE CABLE

**Fuel Tank Lines** 

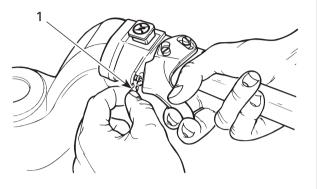
# WARNING

When draining a fuel tank or whenever a fuel line is disconnected, obstruct line with a hose pincher (P/N 529 0099 00) or equivalent device. Fuel is flammable and explosive under certain conditions. Ensure work area is well ventilated. Do not smoke or allow open flames or sparks in the vicinity.



### Impulse/Fuel Lines Spring Clips (all models)

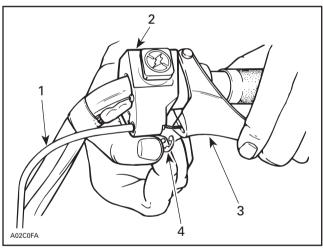
Always reposition spring clips after any repair to prevent possible leaks.


# Throttle Cable Circlip at Handlebar (all models)

Put silicone grease (P/N 413 7017 00) around cable barrel. Locate circlip as per illustration.

# WARNING

If this procedure is disregarded, throttle might be half-open at normally closed position and the engine will speed up when starting.


#### Models with Easy Action Throttle Lever

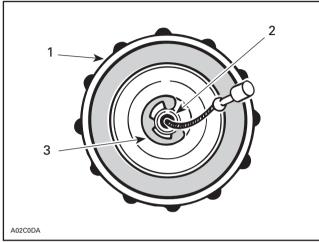


A20H0BA

TYPICAL 1. Circlip

#### Other Models




#### TYPICAL

- 1. Throttle cable housing
- 2. Throttle handle housing
- *3. Throttle handle 4. Circlip*

#### Section 04 ENGINE Subsection 09 (FUEL TANK AND THROTTLE CABLE)

#### Throttle Cable O-ring and Retaining Ring at Carburetor (some models)

Locate O-ring outside of carburetor cover and retaining ring inside.



1. Carburetor cover

- 2. Throttle cable housing
- 3. Retaining ring

Adjust throttle cable as specified in CARBURE-TOR AND FUEL PUMP 04-08.

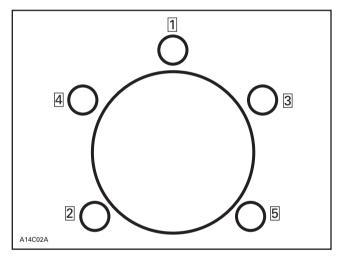
### **Throttle Cable Routing**

# CAUTION

Check that throttle cable is routed away from sharp edges, hot or vibrating parts. When turning steering while engine is running, idle speed must not vary.

### Fuel Level Sensor

#### Inspection


Visually inspect the condition of connectors and wiring throughout the circuit. Connections must be clean and tight, and wiring free of damage. Repair as necessary. Use silicone dielectric grease to prevent corrosion at the connectors. Operate the engine to see if the problem has been corrected.

#### **Fuse Replacement**

A 0.25 ampere fuse protects fuel level sensor circuitry. Remove seat to gain access.

#### **Fuel Level Sensor Screws**

Torque fuel level sensor retaining screws to 1 N•m (8 lbf•in) in the sequence shown and then to 2.5 N•m (22 lbf•in), using the same sequence.

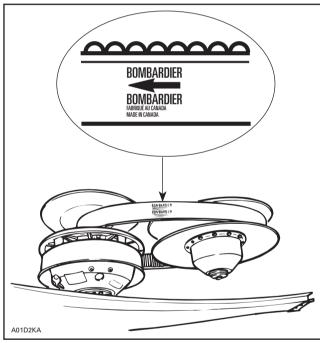


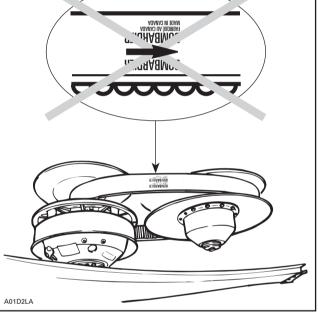
# **TABLE OF CONTENTS**

DRIVE BELT	05-02-1
1998 APPLICATION CHART	05-02-1
ROTATION DIRECTION	05-02-1
DRIVE BELT DEFLECTION MEASUREMENT	05-02-2
DEFLECTION ADJUSTMENT	05-02-3
DRIVE PULLEY	05-03-1
TRA	05-03-1
GENERAL	05-03-2
REMOVAL	05-03-2
DISASSEMBLY	05-03-3
CLEANING	05-03-4
INSPECTION	05-03-4
ASSEMBLY	05-03-6
INSTALLATION	05-03-8
DRIVE PULLEY ADJUSTMENT	05-03-9
DRIVEN PULLEY	05-04-1
REMOVAL	05-04-2
DISASSEMBLY	05-04-2
CLEANING	05-04-2
INSPECTION	05-04-3
ASSEMBLY	05-04-4
INSTALLATION	05-04-5
ADJUSTMENT	05-04-5
PULLEY DISTANCE AND ALIGNMENT	05-05-1
GENERAL	05-05-1
GENERAL PROCEDURE	05-05-1
PULLEY ALIGNMENT AND DISTANCE SPECIFICATIONS CHART	05-05-2
BRAKE	05-06-1
HYDRAULIC DISC BRAKE	05-06-1
REMOVAL	05-06-2
DISASSEMBLY	05-06-2
CLEANING	05-06-2
INSPECTION	05-06-2
INSTALLATION	05-06-2
ADJUSTMENT	05-06-3
BLEEDING	05-06-3

Subsection 01 (TABLE OF CONTENTS)

CHAINCASE	05-07-1
REMOVAL	05-07-2
INSPECTION	05-07-2
GEAR RATIO MODIFICATION	05-07-2
INSTALLATION	05-07-2
DRIVE CHAIN ADJUSTMENT	05-07-3
ADJUSTMENT	05-07-4
GEARBOX	05-08-1
DISASSEMBLY	05-08-2
INSPECTION	05-08-2
ASSEMBLY	05-08-2
ADJUSTMENT	05-08-4
OIL CHANGE	05-08-4
DRIVE CHAIN	05-09-1
SILENT CHAIN	05-09-1


# **DRIVE BELT**


## **1998 APPLICATION CHART**

MODEL	PART NUMBER	WIDTH (NEW) ± 0.25 mm (.010 in)	MINIMUM WIDTH (WEAR LIMIT) mm (in)
CK3 Series	415 0450 00	35.6 (1.400)	33 (1-19/64)

## **ROTATION DIRECTION**

The maximum drive belt life span is obtained when the drive belt is installed as shown. This will ensure that correct direction of rotation is respected.





INCORRECT

**NOTE:** For used drive belt, mark and reinstall in the same position.

CORRECT

Subsection 02 (DRIVE BELT)

## DRIVE BELT DEFLECTION MEASUREMENT

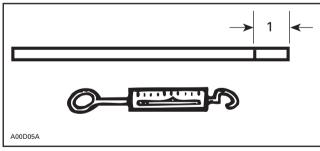
**NOTE:** The drive belt deflection measurement must be performed each time a new drive belt is installed.

**NOTE:** To obtain an accurate drive belt deflection measurement, it is suggested to allow a break-in period of 50 km (30 mi).

Before checking the belt deflection, ensure vehicle has the proper belt (refer to the application chart).

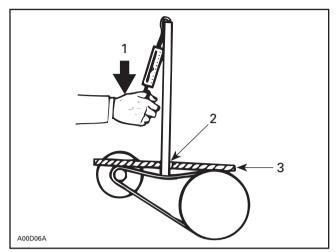
Adjust pulley distance and alignment. Refer to PULLEY DISTANCE AND ALIGNMENT 05-05.

To obtain maximum vehicle performance, the belt tension must be adjusted according to specifications shown in the accompanying chart.


MODEL	DEFLECTION mm (in)	FORCE kg (lb)	HEIGHT [†] OVER DRIVEN PULLEY	
All Models	38 ± 5	11.5	0 - 1.5 mm	
	(1-1/2 ± 13/64)	(25)	(0 - 1/16'')	

[†] FOR REFERENCE ONLY

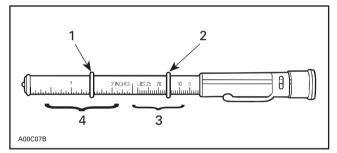
#### To Check Tension


Position a reference rule on drive belt.

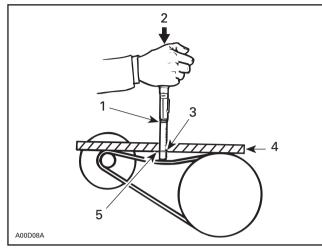
#### Wooden Stick and Spring Scale Method



1. Mark specified deflection


Using spring scale and stick, apply specified force on drive belt halfway between pulleys as shown.




1. Force

- 2. Read deflection here
- 3. Reference rule

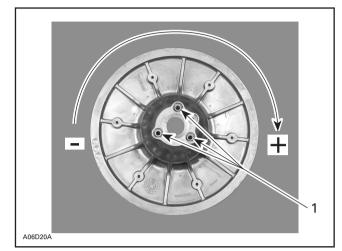
Or use the belt tension tester (P/N 414 3482 00).



- 1. Lower O-ring
- Upper O-ring
   Force (read down)
- Force (read down)
   Deflection (read up)
- 1. Slide lower O-ring of deflection scale to specified measure.
- 2. Slide upper O-ring to 0 (zero) on the force scale.
- 3. Apply pressure until lower O-ring is flush with edge of rule and read force on the upper scale at top edge of O-ring.

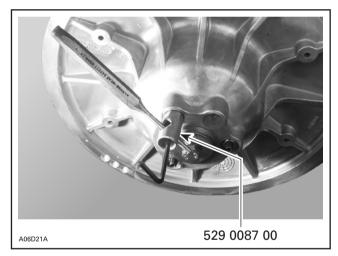


- Upper O-ring 1
- 2. 3. Force
- Lower O-ring
- 4. Reference rule 5. Deflection


## DEFLECTION ADJUSTMENT

Adjust pulley distance according to specification, refer to PULLEY DISTANCE AND ALIGNMENT 05-05, then adjust drive belt deflection using Allen screws, as shown.

To increase deflection: turn Allen screws clockwise.

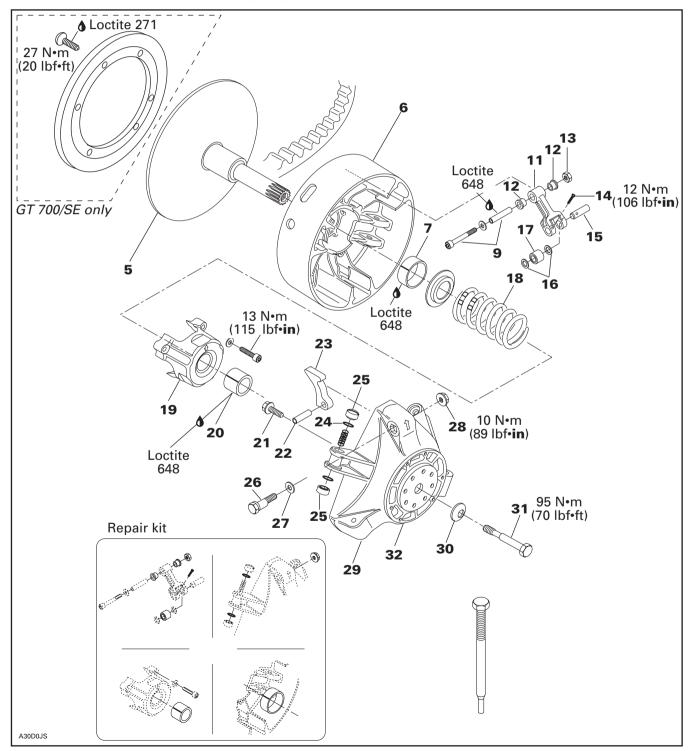

To decrease deflection: turn Allen screws counterclockwise.

NOTE: Turn Allen screws 1/4 turn at a time, then rotate driven pulley to allow drive belt to settle in pulley. Check deflection, repeat as required.



1. Allen screw with jam nut

Allen screws must be restrained while tightening jam nut to prevent throwing adjustment out. Use drive belt tension adjuster (P/N 529 0087 00).




# **DRIVE PULLEY**

## TRA

#### All Models

NOTE: This is a lubrication free drive pulley.



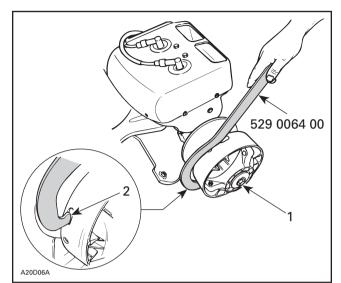
## GENERAL

Some drive pulley components (return spring, ramp) can be changed to improve vehicle performance in high altitude regions. The *High Altitude and Sea Level Technical Data Booklet* (P/N 484 0686 00 and 484 0545 00 for binder) gives information about calibration according to altitude.

# CAUTION

Such modifications should only be performed by experienced mechanics since they can greatly affect vehicle performance. Verify spring specifications before installation. Do not only refer to the spring color code.

**NOTE:** TRA clutch stands for Total Range Adjustable clutch.


# WARNING

Any drive pulley repairs must be performed by an authorized Bombardier snowmobile dealer, or other such qualified person. Subcomponent installation and assembly tolerances require strict adherence to procedures detailed.

## REMOVAL

# 30,31, Conical Spring Washer and Screw

Use clutch holder (P/N 529 0064 00).



#### TYPICAL

1. Retaining screw

2. Insert in any slot

**NOTE:** Sliding half can be removed while fixed half remains on crankshaft.

## WARNING

Never use any type of impact wrench at drive pulley removal and installation.

Remove retaining screw.

To remove drive pulley ass'y and/or fixed half from engine, use puller (P/N 529 0224 00).

# CAUTION

These pulleys have metric threads. Do not use imperial threads puller. Always tighten puller by hand to ensure that the drive pulley has the same type of threads (metric vs imperial) prior to fully tightening.

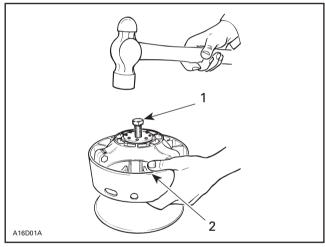
#### To Remove Drive Pulley Ass'y

Retain drive pulley with clutch holder. Install puller in pulley shaft then tighten.

## DISASSEMBLY

1,2, Screw and Ring Gear

# **CAUTION**


Retaining screws must be heated before disassembly.

5,6, Fixed and Sliding Half



Do not tap on governor cup.

Screw puller into fixed half shaft about 13 mm (1/2 in). Raise drive pulley and hold it by the sliding half while knocking with a rubber mallet on puller head to disengage fixed half.

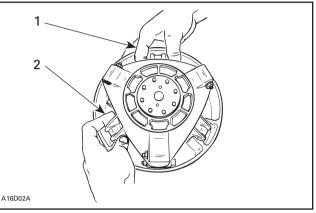


#### TYPICAL

- 1. Puller
- 2. Holding sliding half

NOTE: No components marking is required before disassembling this drive pulley since it has factory mark and arrows as indexing reference. Fixed half and sliding half are separetely balanced thus no indexing is needed between those two.

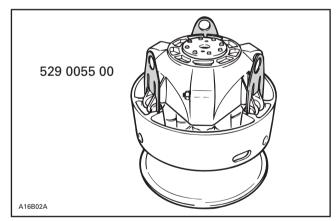
## 25,29, Slider Shoe and Governor Cup


Carefully lift governor cup until slider shoes come at their highest position into guides.

Hold a slider shoe set then carefully lift its housing and remove slider shoes. Proceed the same way for other housings lifting one at a time.

### 32, Cushion Drive

## CAUTION


Do not disassemble cushion drive. Governor cup and cushion drive are factory balanced as an assembly.



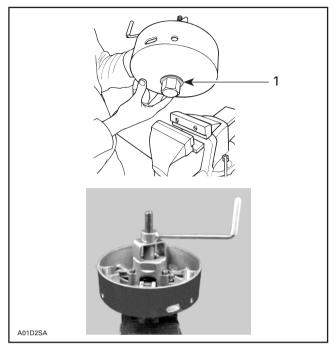
1. Hold slider shoes

2. Lift one housing at a time

NOTE: To ease disassembly, forks (P/N 529 0055 00) should be used to hold slider shoes prior to removing governor cup.



## 19, Spring Cover Ass'y


It is pushed by clutch spring pressure.



to remove spring cover without the recommended tools.

Use spring compressor (P/N 529 0151 00).

Subsection 03 (DRIVE PULLEY)



1. Washer must be here

Install tools as shown. Remove 3 Allen screws retaining spring cover then unscrew compressor.

## CLEANING

## 5,6, Fixed and Sliding Half

Clean pulley faces and shaft with fine steel wool and dry cloth.

### 5, Fixed Half and Crankshaft End

Parts must be at room temperature before cleaning.

Using a paper towel with cleaning solvent (P/N 413 7082 00), clean crankshaft tapered end and the taper inside the fixed half of the drive pulley, crankshaft threads and retaining screw threads.

# WARNING

This procedure must be performed in a well-ventilated area.

# **CAUTION**

Avoid contact between cleaner and crankshaft seal because damage may occur. Remove all hardened oil deposits that have baked on crankshaft and pulley tapered surfaces with coarse or medium steel wool and/or sand paper no. 600.

# CAUTION

Do not use any other type of abrasive.

Reclean mounting surfaces with paper towel and cleaning solvent (P/N 413 7082 00).

Wipe off the mounting surfaces with a clean, dry paper towel.

# CAUTION

Mounting surfaces must be free of any oil, cleaner or towel residue.

## 7,20, Bushing

Only use petrol base cleaner when cleaning bushings.

## CAUTION

Do not use acetone to clean bushing.

## INSPECTION

Drive pulley should be inspected annually.

#### 16,17, Thrust Washer and Roller

Check roller for roundness of external diameter. Check thrust washer for thickness wear. Replace as required.

# CAUTION

Ensure rollers are in good condition. Replace as required.

# 9,12, Fitting Bolt Ass'y and Flanged Bushing

Check for wear, replace as required. When installing old style flanged bushing (made of black plastic), use a size "O" (letter) drill bit to ream inside diameter.

## 24,25, O-ring and Slider Shoe

Check if O-rings are cracked, cut or crushed. Replace as required.

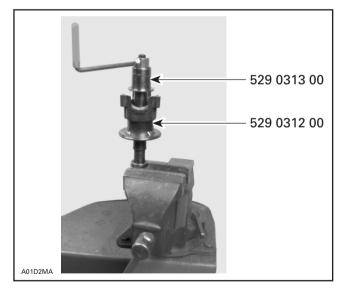
Check slider shoes for wear. Replace if groove is not apparent on top.

### 5,29, Fixed Half and Governor Cup

Inspect splines and free play between both parts. Maximum free play is 0.5 mm (.020 in) measured at calibration screw radius. Replace if required.

# 7,20, Sliding Half and Spring Cover Bushing

Visually inspect coating. Replace if worn.


#### **Sliding Half Bushing**

This bushing is not replacable. If worn out, replace sliding half ass'y.

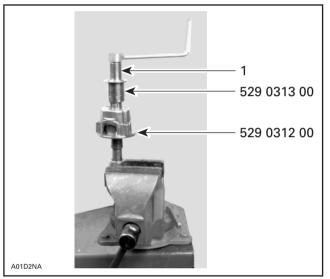
#### Spring Cover Bushing Replacement

Under normal use there is no need to replace this bushing.

Use tools (P/N 529 0313 00 and 529 0312 00) to remove old bushing.

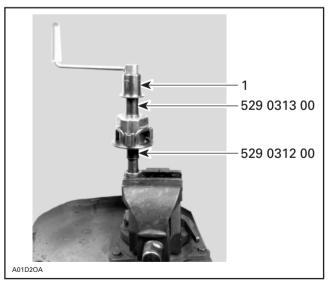


# CAUTION


Bushing must be bonded with retaining compound.

Apply retaining compound Loctite 648 outside of bushing then press it down to counterbore from outside end. Use spring compressor (P/N 529 0151 00) and appropriate tools.

# CAUTION


Insert bushing from outside (governor side) of spring cover.

Start driving bushing into spring cover.



1. Note upper tool side

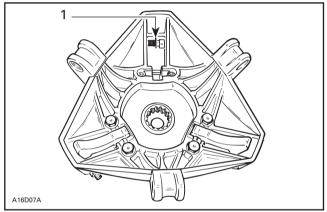
Press bushing.



1. Note upper tool side

Subsection 03 (DRIVE PULLEY)

## ASSEMBLY


**NOTE:** This drive pulley is lubrication free. **Do not lubricate** any component.

### 1,2,3, Screw, Ring Gear and Loctite 271

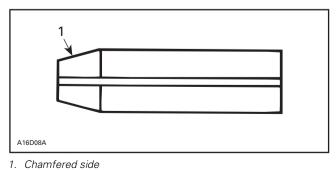
Apply Loctite 271 (P/N 413 7029 00) on threads and then torque to 27 Nem (20 lbfeft).

# 26,27,28, Calibration Screw, Washer and Locking Nut

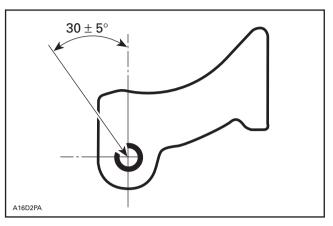
When installing calibration screw, make sure to install washer as shown.

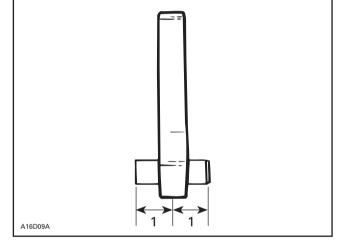


1. Washer




#### 15, Pin


Always use the same type of pin as originally installed when servicing. Different types have different weights for calibration purpose. Refer to TECHNICAL DATA 10-03.


## 21,22,23, Ramp, Dowel Tube and Screw

Insert dowel tube from chamfered side. Make sure ramp is centered on dowel tube.



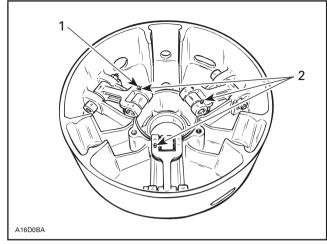
Position dowel tube split at the illustrated angle.





1. Equal distance

Torque screws to 10 N•m (89 lbf•in).


# 9,11,13,14, Screw, Lever Ass'y, Nut and Cotter Pin

Always install lever assemblies so that cotter pins are on the shown side. Besides install cotter pin head on top when lever is sat at bottom of sliding half. Bend cotter pin ends to sit perfectly against lever.

# WARNING

Whenever replacing centrifugal levers, always replace all 3 at the same time. Otherwise, clutch misbalancing will occur because of levers difference.

05-03-6



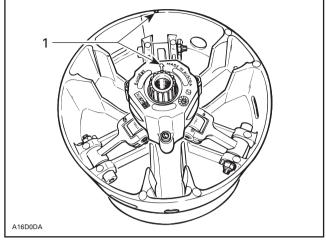
- 1. Head on top
- 2. All on the same side



Lever assemblies must be installed so that cotter pins are on the same side.

Torque nuts to 12 N•m (106 lbf•in).

# CAUTION


Lever ass'y and rollers must move easily after installation.

# 5,6,18,19, Fixed Half, Sliding Half, Spring, Spring Cover and Screw

To install spring cover, use spring compressor (P/N 529 0151 00).

Assemble fixed and sliding halves. Note that fixed halves have different cone angle. Match cone angle with crankshaft.

Lift sliding half against spring cover and align spring cover arrow with sliding half mark.



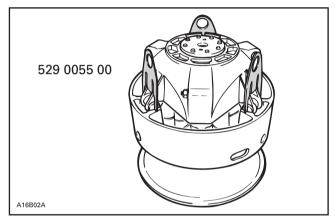

1. Align

Install and torque screws to 13 N•m (115 lbf•in).

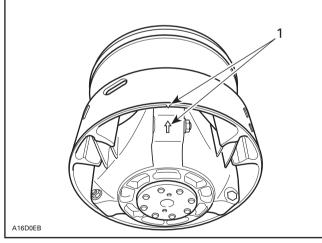
# 6,25,29, Sliding Half, Slider Shoe and Governor Cup

To install governor cup, use following tool:




Insert spring and slider shoes into governor cup so that groove in each slider shoe is vertical to properly slide in guides.

Subsection 03 (DRIVE PULLEY)


# CAUTION

Make sure O-rings are installed on slider shoes and their grooves are positioned vertically.

Install fork (P/N 529 0055 00) into slider shoe grooves to maintain them for governor cup installation. Proceed on 3 set of slider shoes.



Make sure to align governor cup arrow with sliding half mark.



1. Align

Carefully slide governor cup into sliding half.

Remove forks and push governor cup so that its splines engage with fixed half shaft splines.

# CAUTION

Make sure splines of both parts are fully engaged.

## INSTALLATION

# WARNING

Do not apply anti-seize or any lubricant on crankshaft and drive pulley tapers.

## WARNING

Never use any type of impact wrench at drive pulley removal and installation.

Clean mounting surfaces as described in **CLEAN-ING** above.

### Drive Pulley Ass'y

The installation procedure must be strictly adhered to as follows.

Install drive pulley on crankshaft extension.

Install conical washer with its concave side towards drive pulley then install screw.

## WARNING

Never substitute lock washer and/or screw with jobber ones. Always use Bombardier genuine parts for this particular case.

Use clutch holder. See removal procedure.

Torque screw to 90 to 100 N•m (66 to 74 lbf•ft).

Install drive belt and belt guard.

Raise and block the rear of the vehicle and support it with a mechanical stand.

# WARNING

Ensure that the track is free of particles which could be thrown out while track is rotating. Keep hands, tools, feet and clothing clear of track. Ensure nobody is standing near the vehicle. Accelerate the vehicle at low speed (maximum 30 km/h (20 MPH) and apply the brake, repeat 5 times.

Recheck the torque of 90 to 100 N•m (66 to 74 lbf•ft).



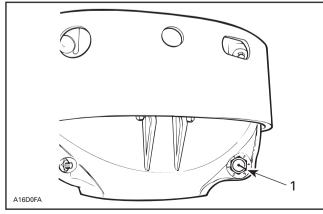
After 10 hours of operation the transmission system of the vehicle must be inspected to ensure the retaining screw is properly torqued.

## DRIVE PULLEY ADJUSTMENT

The drive pulley is factory calibrated to transmit maximum engine power at a predefined RPM. Factors such as ambient temperature, altitude or surface condition may vary this critical engine RPM thus affecting snowmobile efficiency.

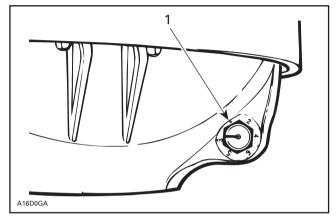
This adjustable drive pulley allows setting maximum engine RPM in the vehicle to maintain maximum power.

Calibration screws should be adjusted so that actual maximum engine RPM in vehicle matches with the maximum horsepower RPM given in TECHNICAL DATA 10-03.


**NOTE:** Use precision digital tachometer for engine RPM adjustment.

**NOTE:** The adjustment has an effect on high RPM only.

To adjust, modify ramp end position by turning calibration screws.


#### 26,28,29, Calibration Screw, Locking Nut and Governor Cup

Calibration screw has a notch on top of its head.



Governor cup has 6 positions numbered 2 to 6. Note that in position 1 there is no stamped number (due to its location on casting).

See TECHNICAL DATA 10-03 for original setting.



1. Position 1 (not numbered)

Each number modifies maximum engine RPM by about 200 RPM.

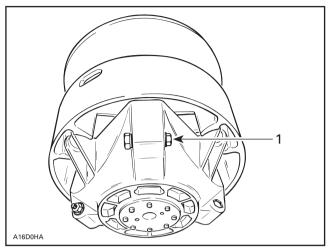
Lower numbers decrease engine RPM in steps of 200 RPM and higher numbers increase it in steps of 200 RPM.

Example:

Calibration screw is set at position 3 and is changed to position 5. So maximum engine RPM is increased by about 400 RPM.

#### To Adjust

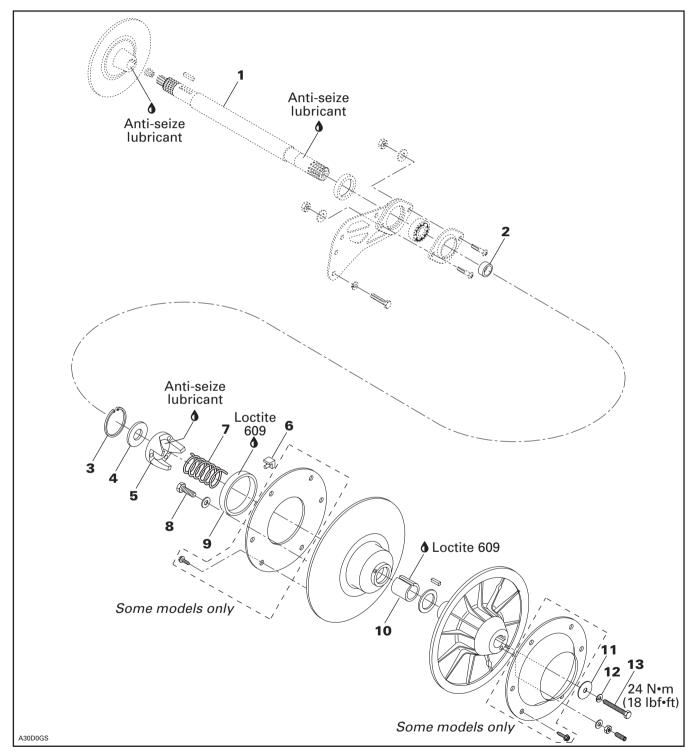
Just loosen locking nut enough to pull calibration screw **partially** out and adjust to desired position. Do not completely remove the locking nut. Torque locking nuts to  $10 \text{ N} \cdot \text{m}$  (89 lbf  $\cdot \text{in}$ ).


# CAUTION

Do not completely remove calibration screw or its inside washer will fall off.

# CAUTION

Always adjust all 3 calibration screws and make sure they are all set at the same number.


Subsection 03 (DRIVE PULLEY)



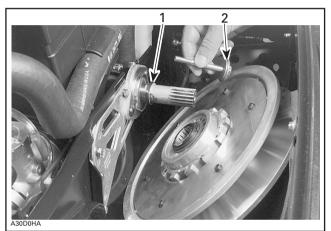
1. Loosen just enough to permit rotating of calibration screw

# **DRIVEN PULLEY**

CK3 Series



Subsection 04 (DRIVEN PULLEY)


## REMOVAL

Remove belt guard and drive belt from vehicle.

Remove cap screw **no. 13**, lock washer **no. 12** and shouldered washer **no. 11** then pull the driven pulley from the countershaft.

Note shouldered washer position for reinstallation.

Take care not to loose spacer(s) **no. 2**. There may be more than a spacer but the total spacer thickness is always 7 mm (.276 in).



Spacer
 Shoulder on this side

### 1, Countershaft

Should countershaft **no. 1** removal be required, refer to BRAKE 05-06 then look for **Countershaft and Brake Disc Removal**.

## DISASSEMBLY

Use spring compressor (P/N 529 0186 00).



Remove snap ring **no. 3** and washer **no. 4** to disassemble the outer cam and the 2 pulley halves.

# WARNING

Driven pulley cam is spring loaded, use above mentioned tool.

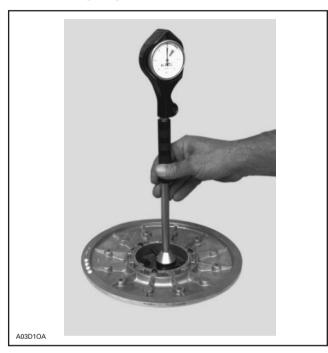
# CLEANING

## 9,10, Large Bushing and Small Bushing

During break-in period (about 10 hours of use), teflon from bushing moves to cam or shaft surface. A teflon over teflon running condition occurs, leading to low friction. So it is normal to see gray teflon deposit on cam or shaft. Do not remove that deposit, it is not dust.

When a dust deposit has to be removed from the cam or the shaft, use dry cloth to avoid removing transferred teflon.

### **Pulley Half Cleaning**

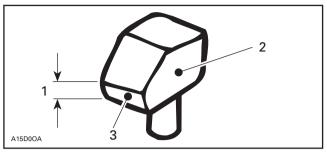

Use Loctite Safety Solvent (P/N 413 7082 00).

## **INSPECTION**

### 9,10, Bushings

Check for cracks, scratch and for free movement when assembled to fixed half.

Using a dial bore gauge measure bushing diameter. Measuring point must be at least 5 mm (1/4 in) from bushing edge.




Replace bushing(s) if worn more than specified.

DRIVEN PULLEY BUSHING WEAR LIMIT mm (in)		
Small bushing	38.30 (1.508)	
Large bushing	89.15 (3.510)	

## 6, Slider Shoe

Check cam slider shoes for wear. Replace when inside edge of cam slider shoe slope base is worn to 1 mm (.039 in) or less.

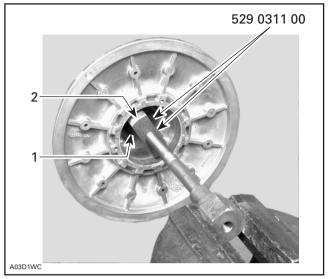


Measure thickness of slope base here 1

 Sliding pulle
 Slope base Sliding pulley side

#### **Bushing Replacement**

#### Large Bushing


Remove Allen screws if applicable. Heat to break Loctite bond.

Remove all 3 slider shoes.

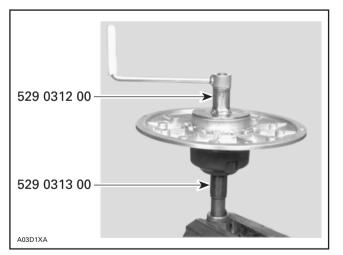


Use bushing installer/remover (P/N 529 0311 00). Install support plate inside sliding half. Place puller below bushing.

Subsection 04 (DRIVEN PULLEY)



Support plate
 Puller


z. Pullel

Mount puller screw head in a vise.

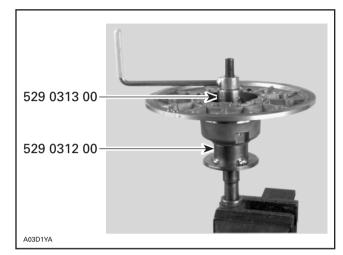
Turn pulley half by hand to extract old bushing.

Before bushing installation, file sliding half bore to remove burrs from crimping areas.

Coat bushing outside diameter with Loctite 609 (P/N 413 7031 00). Place new bushing on sliding half and slightly tap to engage squarely the bushing in the sliding. Use tools (P/N 529 0312 00 and 529 0313 00) to install bushing.



Install 3 Allen screws no. 8 and washers supplied with the new bushing.


#### Small Bushing

**NOTE:** Following procedure can be done with a press using the same tools.

Install puller in a vise.

Heat bushing area.


Turn puller handle and sliding half at once to extract the bushing.



**IMPORTANT:** Large bushing retaining screws and washers must be removed before small bushing installation.

Coat bushing outside diameter with Loctite 609 (P/N 413 7031 00).

Install bushing as following photo.



# ASSEMBLY

#### 6, Cam Slider Shoe

When replacing slider shoes, always install a new set (3 shoes) to maintain equal pressure on the cam.

Assemble driven pulley components by reversing the disassembly procedure.

## 5, Cam

Coat cam interior with anti-seize lubricant.

## INSTALLATION

#### 1, Countershaft

# CAUTION

Always apply anti-seize lubricant (P/N 413 7010 00) on the countershaft before final pulley installation.

Should installation procedure be required, refer to BRAKE 05-06 then look for **Brake Disc and Countershaft Bearing Adjustment**.

Reinstall the pulley on the countershaft by reversing the removal procedure.

Driven pulley end-play is 0 (zero).

### 13, Pulley Retaining Screw

Torque to 24 N•m (18 lbf•ft).

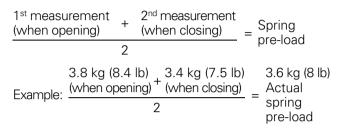
## ADJUSTMENT

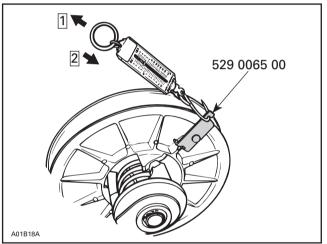
Refer to PULLEY DISTANCE AND ALIGNMENT 05-05 to adjust pulley distance. Adjust drive belt height in driven pulley to obtain specified belt deflection.

## 7, Spring

#### General

It is usual to experience spring setting during breaking period of a new spring. The factory spring preload is slightly higher to compensate for spring setting. Specifications in TECHNICAL DATA 10-03 are applicable after break-in period (about 10 hours of use).


#### Spring Torsional Pre-Load


To check spring pre-load adjustment, use spring scale hook (P/N 529 0065 00) and a spring scale.

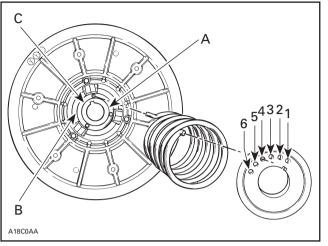
#### Remove drive belt.

Install the hook on the sliding half. Preventing fixed half from turning, pull sliding half with the spring scale perpendicularly with pulley axle.

Take 1st measurement when sliding half begins to turn. Rotate sliding half to 10 mm (3/8 in) of rotation. Hold fish scale at this position. Slowly release tension from fish scale and take 2nd measurement when sliding half begins to return. Spring pre-load is the average measurement between these 2.








Step 1 : 1st measurement Step 2 : 2nd measurement

To adjust spring pre-load, relocate spring end in cam, moving it clockwise to increase the pre-load and counterclockwise to decrease it. Refer to TECHNICAL DATA 10-03.

**NOTE:** If spring pre-load can not be adjusted, try to relocate the other end of spring in sliding pulley (holes A, B and C).

Subsection 04 (DRIVEN PULLEY)

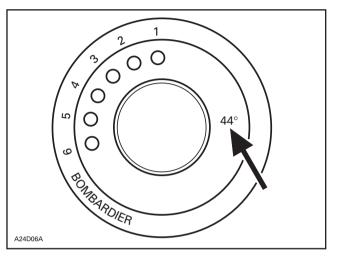


Letters and numbers shown in illustration are actual letters and numbers embossed on parts

**NOTE:** Always recheck torsional pre-load after adjusting.

# Pulley Alignment and Drive Belt Deflection

Refer to PULLEY DISTANCE AND ALIGNMENT 05-05 and DRIVE BELT 05-02 to perform adjustments.


## CAUTION

Drive belt and pulley adjustments must always be checked whenever pulleys have been removed, replaced or disassembled.

### 5, Outer Cam

Make sure to install proper cam. Refer to TECHNI-CAL DATA 10-03.

Cam angle is identified on cam.



**NOTE:** For high altitude regions, the *High Altitude and Sea Level Technical Data Booklet* (P/N 484 0686 00 and 484 0545 00 for binder) gives information about calibration according to altitude.

# **PULLEY DISTANCE AND ALIGNMENT**

## GENERAL

The pulley distance we will refer to in this section, is the space separating the drive and driven pulley outside diameters (Z measurement).

This basic distance is provided as an assembly guide and indicates the dimensions between which satisfactory belt deflection will be obtained.

Both pulley distance adjustment and pulley alignment must be carried out to ensure the highest efficiency of the transmission system. Furthermore, optimum drive belt operation and minimal wear will be obtained only with proper pulley alignment.

# CAUTION

Before checking pulley adjustment, the rear suspension must be mounted on the vehicle and track tension/alignment must be done. Always check pulley adjustment after suspension is adjusted.

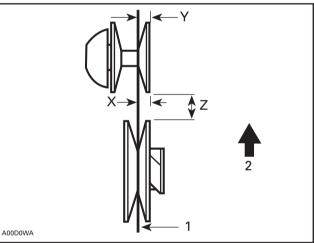
# WARNING

Failure to correctly perform pulley alignment may cause the vehicle to creep forward at idle.

#### All Pulley Alignment Specifications Refer to

- X = Distance between straight bar and drive pulley fixed half edge, measured between pulleys.
- Y = Distance between straight bar and drive pulley fixed half edge, **measured at the end of straight bar**.
- Z = Distance between outside diameter of pulleys.

## **GENERAL PROCEDURE**


Remove belt guard and drive belt.

By turning and pushing the sliding half, open the driven pulley. Insert a straight bar 9.5 mm (.375 in) square, 48 cm (19 in) long or the proper alignment template into the opened driven pulley.

### **Measuring Procedure**

#### Using Straight Bar

Always measure distances X and Y from the farther straight bar side (including its thickness to the fixed half edge).

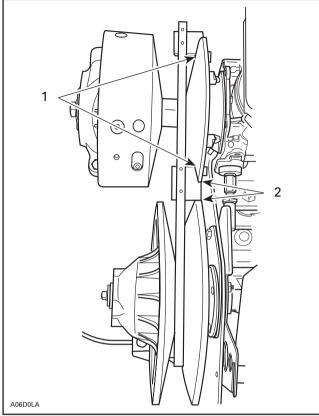


TYPICAL

1. Straight bar

2. Front of vehicle

The distance Y **must** exceed distance X to compensate for the twist due to the engine torque.


#### Nominal Value Procedure and Quick Alignment and Distance Check

Alignment template tabs must fully contact fixed half of drive pulley.

Pulley distance is correct when tab contacts both pulley halves.

Refer to below chart for proper alignment template.

Subsection 05 (PULLEY DISTANCE AND ALIGNMENT)



### **Drive Belt Deflection**

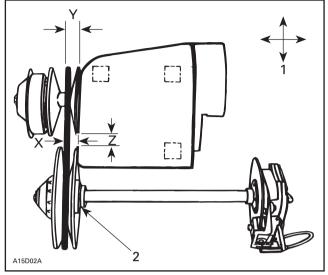
**NOTE:** When pulley distance and alignment are adjusted to specifications, refer to DRIVE BELT 05-02 to adjust drive belt deflection.

# CAUTION

This section deals mainly with adjustment procedures. For complete assembly requirements, refer to the proper ENGINE or TRANS-MISSION installation section.

#### TYPICAL

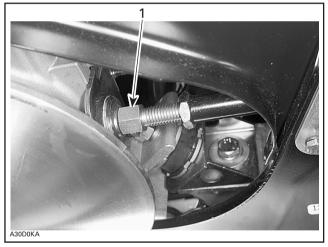
1. Contact (alignment)


2. Contact (distance)

# PULLEY ALIGNMENT AND DISTANCE SPECIFICATIONS CHART

	PULLEY DISTANCE	OFFSET		ALIGNMENT TEMPLATE
MODEL	Z	Х	Y-X	1
	+ 0, – 1 mm (+ 0, – .040 in)	± 0.50 mm (.020 in)	± 0.5 mm (.020 in)	P/N
All	120.0 (4.724)	35.5 (1.398)	1.5 (0.060)	529 0355 27

① Alignment templates have been made according to pulley alignment nominal values. However, they do not take into account allowed tolerances for alignment specifications. They are used as GO/NO GO gauges for quick alignment and pulley distance check and as templates to reach alignment nominal values.


# Subsection 05 (PULLEY DISTANCE AND ALIGNMENT)



TYPICAL

- 1. Engine movement
- 2. Contact

**NOTE:** Prior to performing pulley adjustment, loosen torque rod nut to allow engine movement. Engine supports have tendency to stick to frame, work engine loose prior to aligning.



1. Loosen

#### Pulley Distance Adjustment Method

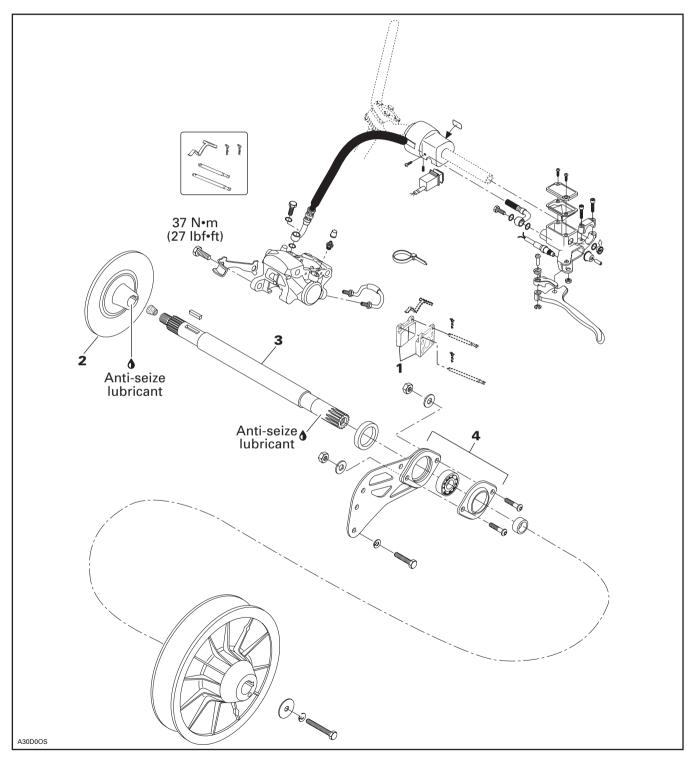
#### **Engine Movement**


The engine support has slotted mounting holes. Move engine to obtain specified distance between pulleys.

#### Pulley Alignment Method

#### **Engine Movement**

Loosen the 4 bolts retaining engine support to the frame. Position engine to obtain the specified alignment.


**NOTE:** After alignment, adjust torque rod so it slightly contacts stopper plate. Do not over tighten, it will disalign pulleys.



1. Retighten

# BRAKE

## **HYDRAULIC DISC BRAKE**



Subsection 06 (BRAKE)

## REMOVAL

#### BRAKE DISC REMOVAL

Brake disc can be withdraw without removing caliper. Proceed as follows:

- Remove belt guard, belt and driven pulley.
- Remove air silencer.
- Unbolt bearing support no. 4 from chassis.
- Unbolt caliper from chaincase.
- Open chaincase and remove upper sprocket.
- Pull countershaft **no.3** toward driven pulley side to free from chaincase and disc.
- Remove disc.

## DISASSEMBLY

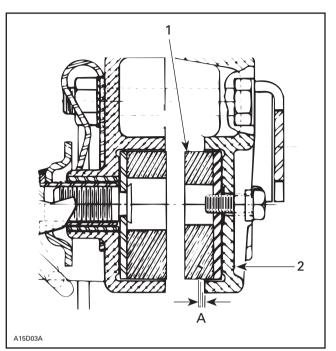
Only brake pads are available as spare parts. If caliper or master cylinder are damaged, replace each of them as an assembly.

## CLEANING

Clean all metal components in a general purpose solvent. Thoroughly dry all components before assembling.

# **CAUTION**

Do not clean brake pads in solvent. Soiled brake pads must be replaced by new ones.


## INSPECTION

#### 1, Brake Pad

Brake pads must be replaced when lining is 1 mm (1/32 in) thick or less.

## CAUTION

Brake pads must always be replaced in pairs.



**TYPICAL** 

- 1. Fixed pad
- 2. Inner caliper A. 1 mm (1/32 in) minimum

#### 2, Brake Disc

Check for scoring, cracking or bending, replace as required.

# CAUTION

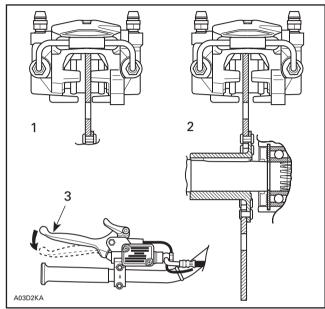
Brake disc should never be machined.

# WARNING

Always install a new nut when servicing.

## INSTALLATION

To install brake, reverse removal procedure paying attention to the following.


## WARNING

Avoid getting oil on brake pads.

### 1, Brake Pad

After brake pads installation, brake disc must be centered in caliper. Apply brake then check for proper brake disc positioning.

Push on appropriate caliper piston in order to move pad inward allowing proper brake disc positioning.



1. Brake disc not centered

- 2. Brake disc centered
- 3. Apply brake before checking

Apply brake then recheck.

### 2, Brake Disc

Apply anti-seize lubricant (P/N 413 7010 00) on shaft.

The disc hub exceeds the disc more from one side than from the other. Install disc with the longer exceeding portion toward driven pulley.

## ADJUSTMENT

#### **Countershaft Bearing**

Insert countershaft (with brake disc) from chaincase side through countershaft support (driven pulley side), then insert into chaincase.

Install countershaft bearing **no. 4** and ensure that countershaft is properly aligned, then tighten 3 retaining screws.

**NOTE:** A misaligned countershaft will result in difficulty to center the bearing in its support.

Refer to DRIVE AXLE 07-03 then look **Chaincase Perpendicularity Adjustment**.

Torque castellated nut of upper sprocket to 60 N $\bullet$ m (44 lbf $\bullet$ ft).

## CAUTION

Upper sprocket castellated nut must be tightened **before** bolting bearing support.

Close chaincase.

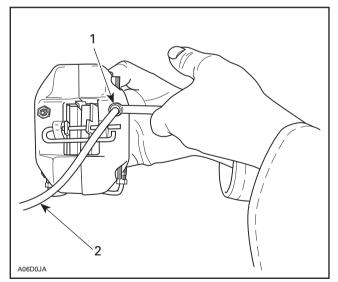
## BLEEDING

Change brake fluid once a year.

Bleed brake system as follows:

Keep sufficient DOT 4 (DOT 3 for normal use) brake fluid in reservoir at all times.

# CAUTION


Use only DOT 4 brake fluid for heavy duty or racing applications.

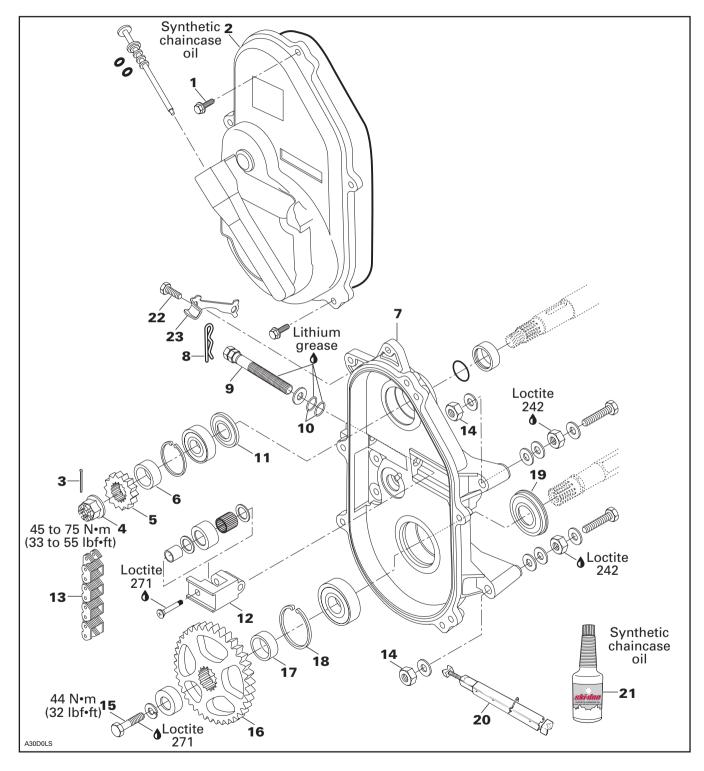
Install a hose on left side bleeder. Route this hose to a container.

Pump a few times brake lever and while holding brake lever depressed, open bleeder and check for air to escape.

Repeat with the same bleeder until no air appears in hose.

Proceed the same way with the right side bleeder.




TYPICAL

Open bleeder
 Clear hose to catch used brake fluid

#### Brake Light

There is no adjustment on these models. Check that switch is securely installed.

# **CHAINCASE**



## REMOVAL

To remove chaincase proceed as follows. Remove tuned pipes and muffler.

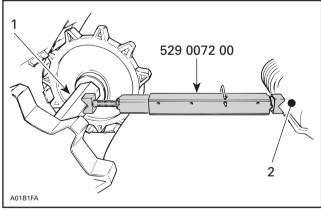
# WARNING

Never remove exhaust components when engine is hot.

Remove hair pin **no. 8**. Release drive chain tension by unscrewing tensioner adjustment screw.

Drain oil by removing chaincase cover no. 2.

# 3,4,5,6,13,16,17, Cotter Pin, Nut, Sprocket, Shim and Drive Chain


Remove cotter pin **no. 3** and nut **no. 4** retaining upper sprocket **no. 5** and screw **no. 15** retaining lower sprocket **no. 16**. Pull sprockets and drive chain simultaneously. Remove shims **nos. 6** and **17**.

**NOTE:** Should countershaft removal be required, refer to BRAKE 05-06 then look for **Brake Disc**.

Remove 5 nuts **no. 14**. Three nuts are behind the lower sprocket.

Unfold locking tab **no. 23** then remove caliper retaining screws **no. 22**.

Release track tension, use drive axle holder no. 20 (P/N 529 0072 00).



TYPICAL

Drive axle
 Suspension cross shaft

Pry out drive axle oil seal **no. 19** from chaincase. Pull chaincase from drive axle and countershaft. Using 2 large screwdrivers inserted between chaincase **no. 7** and frame, pry complete assembly from vehicle.

## INSPECTION

Visually inspect the chain for cracked, damaged or missing links. Check for worn or defective bearings, sprockets and chain tensioner components.

## WARNING

If chain deflection is greater than 38 mm (1.5 in) (without chain tensioner), replace chain and check condition of sprockets.

## GEAR RATIO MODIFICATION

For particular applications, the number of teeth of the sprockets can be increased or decreased on lower and upper sprockets.

Refer to TECHNICAL DATA 10 for gear ratios.

# CAUTION

Gear ratio modifications should only be performed by experienced mechanics since they can greatly affect vehicle performance.

**NOTE:** For high altitude regions, the *High Altitude and Sea Level Technical Booklet* (P/N 484 0686 00 and P/N 484 0545 00 for binder) gives information about calibration according to altitude.

# INSTALLATION

Reverse removal procedure and pay attention to the following. Replace oil seals, gaskets and O-rings.

Refer to DRIVE AXLE 07-03 for drive axle axial play adjustment.

## 11, Oil Seal

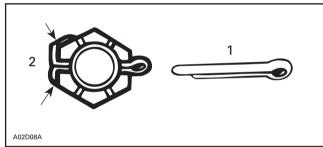
Using an appropriate pusher, press the oil seal into chaincase hub. Oil seal must fit flush with the chaincase edge.

**NOTE:** Should installation procedure for countershaft be required, refer to BRAKE 05-06 then look for **Brake Disc and Countershaft Bearing Adjustment**.

## 5,16, Sprockets

Position the sprockets with the writing facing the chaincase cover.

## 4, Upper Sprocket Castellated Nut


Torque to 45 to 75 N•m (33 to 55 lbf•ft). Install new cotter pin in the position shown.

# **CAUTION**

When removing a cotter pin always replace with a new one.

# CAUTION

Cotter pin will rub on chaincase cover if installed otherwise.



1. New

2. Fold cotter pin over castellated nut flats only

## 18, Circlip

CAUTION

It is of the utmost importance to install the circlip otherwise damage to the chaincase components may occur.

# DRIVE CHAIN ADJUSTMENT

**NOTE:** Brake disc key must be in good condition before checking chain free play.

## 10, O-ring

Replace O-ring **no. 10** on tensioner adjustment screw. Fully tighten tensioner adjustment screw **by hand**, then back off only far enough for hair pin to engage in locking hole. This initial adjustment should provide 3-5 mm (1/8-13/64 in) free-play when measured at the outer circumference of the brake disc.

# CAUTION

Free-play must not exceed 5 mm (13/64 in), readjust if necessary.




If the specified free-play is not reached with the tensioner screw fully tightened, replace chain and check the condition of sprockets.

## 21, Chaincase Oil

Pour 250 mL (8.5 U.S. oz) of synthetic chaincase oil (P/N 413 8033 00) into chaincase.

NOTE: Chaincase oil capacity is 250 mL (8.5 U.S. oz).

Check oil level with the dipstick then add if required. Remove metal particles from magnet.



TYPICAL

Dipstick
 Oil level

3. Level between marks

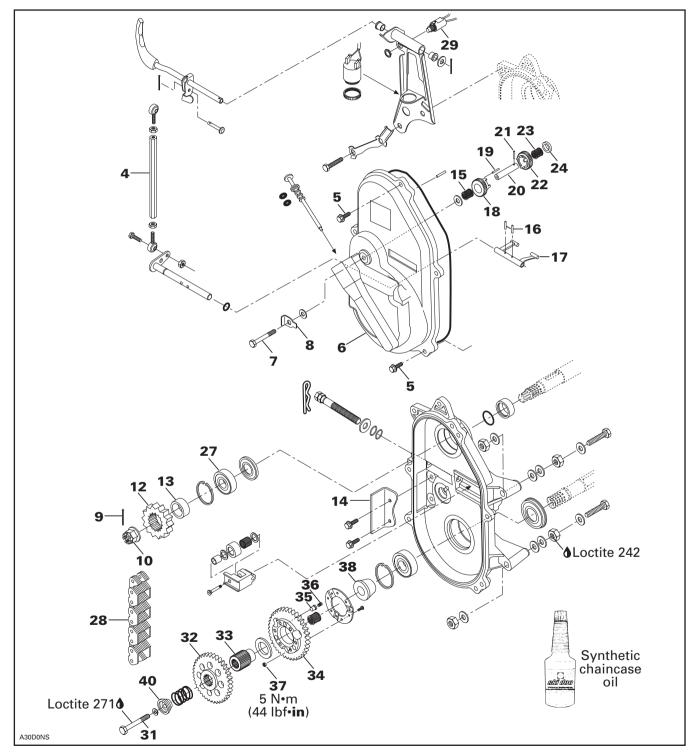
#### Section 05 TRANSMISSION

Subsection 07 (CHAINCASE)

**NOTE:** Chaincase must be in its proper position when checking oil level.

## ADJUSTMENT

## **Pulley Alignment**


Refer to PULLEY DISTANCE AND ALIGNMENT 05-05.

### Track Tension and Alignment

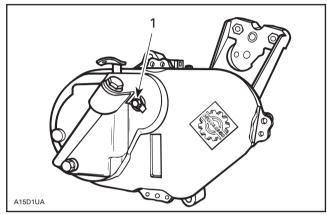
Refer to TRACK 07-04.

# **GEARBOX**

All CK3 Models with a Reverse

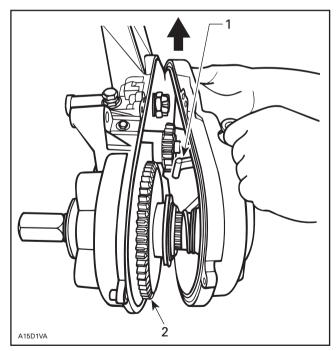


### Section 05 TRANSMISSION


Subsection 08 (GEARBOX)

## DISASSEMBLY

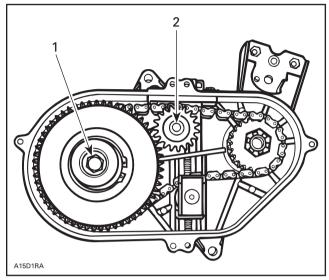
**NOTE:** It is possible to see the sliding gear in motion through oil gauge hole.


Unbolt gear shift linkage from shifter.

Unscrew cover screws no. 5 as well as reverse axle screw no. 7.



1. Reverse axle screw


Separate cover **no. 6** from housing and move it toward the front in order to disengage fork from sliding gear.



Fork
 Sliding gear

Loosen chain tension, unscrew sliding gear retaining screw **no. 31**, then remove sliding gear **no. 32**.

First remove 19-tooth reverse gear **no. 18** and then remove reverse axle **no. 20**.



1. Sliding gear screw

2. Reverse axle

Remove coupling shaft no. 33, sprocket no. 34, spacer no. 38 and chain no. 28.

First unscrew castellated nut **no. 10**, then remove sprocket **no. 12**.

Force 2 spring pins **no. 16** out to disengage fork **no. 17** from its axle.

## INSPECTION

## 14, Chain Slider

Replace slider if maximum wear is 1.0 mm (.039 in) at contact point.

### Bearings

Check bearing condition. There must be no discoloration, missing rollers, broken cages, etc.

### Sprockets and Gears

Check teeth.

## ASSEMBLY

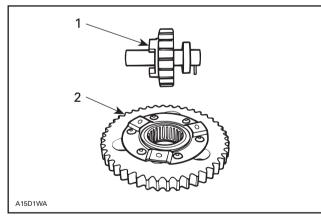
Reinstall drive shaft.

Reinstall gearbox housing.

**NOTE:** Adjustment screw can be installed when housing is installed. The footrest has a large hole for this purpose.

Do not reuse removed oil seals. Replace them by new ones.

Install drive axle with track then bearing and circlip in chaincase bore. Install spacer **no. 38** with its large outer diameter against sprocket, sprocket **no. 34**, coupling shaft **no. 33**, cap **no. 40** and screw **no. 31**.


Place a 25 cm (10-in) rule against sprockets. Maximum allowable offset is 1 mm (.040 in).

- a. If upper sprocket is too far in, possible causes are:
  - 1. Countershaft bearing on driven pulley side may be too far in. To check, pull out bearing then recheck sprocket alignment. Reposition bearing. Bearing housing (triangle) must be against frame without preload.
  - 2. Add shim(s) between chaincase and frame and reposition bearing on driven pulley side accordingly.
- b. If upper sprocket is too far out, check:

If there are too many shims between chaincase and frame. Remove shims accordingly and reposition bearing on driven pulley side.

Press needle bearing in sprocket. Assemble drive pins **no. 35** and their spring **no. 36** on sprocket. Tighten nut **no. 37** to 5 N•m (44 lbf•in) in a crisscross sequence.

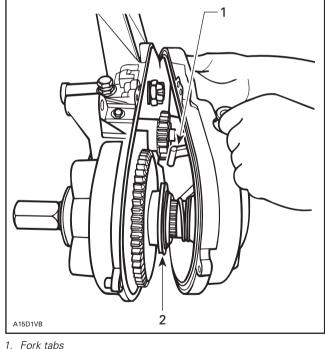
Insert spring pin **no. 21** in reverse axle up to inside diameter. Press needle bearing in 19-tooth sprocket. Install ring **no. 24** and 19-tooth sprocket on reverse axle.



Reverse axle ass'y
 Sliding gear ass'y

Install shim **no. 13**, sprocket (drive) **no. 12** and washer **no. 11** then tighten castellated nut **no. 10** to 45 to 75 N•m (33 to 55 lbf•ft). Secure with a new cotter pin.

Install chain **no. 28**, sprocket **no. 34** and its spacer **no. 38**. Spacer's large outer diameter must be against sprocket. Insert coupling shaft **no. 32** in sprocket.


Install needle bearing no. 15 (wider one) in reverse gear no. 18.

Install reverse axle **no. 20** (assembly) making sure to properly position spring pin in housing slot. Install alignment rod **no. 19**, reverse gear **no. 18** and spacer **no. 24**. Drive sprocket hole and driven gear hole must be aligned to insert alignment rod.

Mount chain tensioner (assembly) to adjustment screw already fixed to gearbox. Assemble fork **no. 17** to axle using spring pins **no. 16**. Apply grease on O-rings.

## 6, Cover

Join cover (assembly) to housing. Make sure fork tabs are behind sliding sprocket thrust washer.



2. Thrust washer



Gearbox cover must completely lay against housing.

# Section 05 TRANSMISSION

Subsection 08 (GEARBOX)

#### 5,7,8, Screws and Locking Tab

Tighten screws in a criss-cross sequence starting with the one above reverse axle. Install reverse axle screw and bend locking tab against screw head flat. Bolt shift linkage to shifter.

## ADJUSTMENT

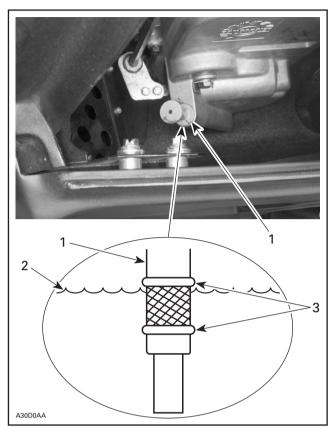
#### 28, Chain

Fully tighten adjustment screw by hand, then back off only far enough for hair pin to engage in locking hole.

## **OIL CHANGE**

Place a container under bottom pan (gearbox side).

Unbolt gear shift linkage from fork axle. Unbolt and remove cover by separating it from housing and by moving it toward the front in order to release fork from sliding sprocket.


Clean cover interior.

**NOTE:** It is normal to find metallic particles stuck to dipstick magnet. If bigger pieces of metal are found, disassemble and check all parts.

Reinstall cover as previously described during assembly.

Fill housing with chaincase oil (P/N 413 8019 00). Oil capacity is 250 mL (8.5 oz).

Check oil level with dipstick. Oil level must be between MIN. and MAX. marks.





- 1. Dipstick
- 2. Oil level
- 3. Level between marks

# **DRIVE CHAIN**

## SILENT CHAIN

All CK3 models are equipped with a 13-plate wide silent chain. Fit chain on sprockets to make sure using right ones according to width. Refer to TECHNICAL DATA 10.

**NOTE:** No work (separation, lengthening) can be done on the silent chain type.

# **TABLE OF CONTENTS**

IGNITION TIMING	06-02-1
NIPPONDENSO TRIGGER COIL SYSTEM	06-02-1
SPARK PLUGS	06-03-1
NGK SPARK PLUG	06-03-1
NGK SPARK PLUG NUMBERING SYSTEM	06-03-1
REFERENCE CHART	06-03-1
DESIGN SYMBOLS USED IN NGK SPARK PLUGS	06-03-2
DISASSEMBLY	06-03-3
HEAT RANGE	06-03-3
FOULING	06-03-3
SPARK PLUG ANALYSIS	06-03-3
SPARK PLUG INSTALLATION	06-03-4
SPARK PLUG TIGHTENING TORQUE	06-03-4
BATTERY	06-04-1
REMOVAL	06-04-1
CLEANING	06-04-1
INSPECTION	06-04-2
HYDROMETER TEST	06-04-2
BATTERY STORAGE	06-04-3
ACTIVATION OF NEW BATTERY	06-04-3
SERVICING	06-04-6
TIPS FOR CHARGING A USED BATTERY	06-04-6
BATTERY CHARGING EQUIPMENT	06-04-7
INSTALLATION OF BATTERY	06-04-7
ELECTRIC STARTER	06-05-1
REMOVAL	06-05-2
INSTALLATION	06-05-2
SOLENOID SWITCH	06-05-2
TESTING PROCEDURE	06-06-1
GENERAL	06-06-1
SYSTEM TESTING	06-06-2
IGNITION SYSTEM TESTING SEQUENCE	06-06-2
LIGHTING SYSTEM TESTING SEQUENCE	06-06-2
1. SPARKING	06-06-2
2. ELECTRICAL CONNECTOR TESTING	06-06-2
3. IGNITION SWITCH, TETHER CORD SWITCH AND EMERGENCY SWITCH TESTING	06-06-3
4. IGNITION GENERATOR COIL VOLTAGE TESTING	06-06-3

Subsection 01 (TABLE OF CONTENTS)

5. TRIGGER COIL TESTING	06-06-4
6. IGNITION MODULE VOLTAGE TESTING	06-06-4
7. HIGH VOLTAGE COIL VOLTAGE TESTING	06-06-5
8. MPEM SUPPLY VOLTAGE TESTING	06-06-5
9. MPEM TESTING	06-06-5
CONCLUSION	06-06-6
LIGHTING GENERATOR COIL VOLTAGE TESTING	
CONCLUSION	06-06-6
ELECTRIC ACCESSORIES TESTING	06-06-6
INSPECTION OF AC CIRCUIT ISOLATION	06-06-12
INSPECTION	06-06-12
INSPECTION OF HEATING ELEMENTS	06-06-13

# **IGNITION TIMING**

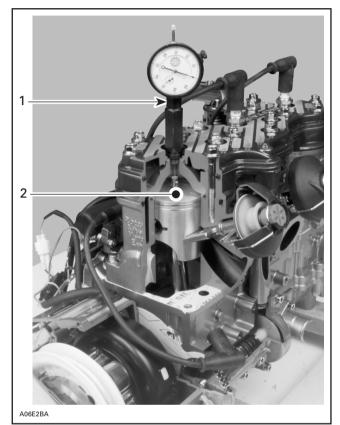
## NIPPONDENSO TRIGGER COIL SYSTEM

Ignition timing is adjusted by movement of trigger coil. Raising position of trigger coil retards ignition. Lowering position of trigger advances ignition.



Each time ignition timing is adjusted by moving trigger coil, air-gap must be adjusted.

Refer to CDI MAGNETO 05-04 then look for Triager Coil Adjustment after adjusting ignition timing.


#### Verifying Magneto Flywheel Timing Mark Position

Prior to checking the timing, it may be necessary to verify the position of the timing mark on the magneto flywheel, for the following reasons:

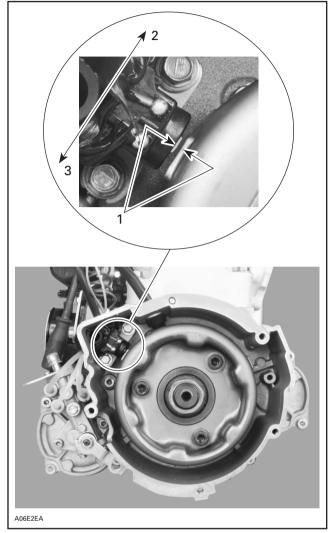
- 1. To detect a missing or broken magneto flywheel Woodruff key which would allow a change of timing to occur, with eventual break down of the engine.
- 2. To correctly locate and mark a timing mark on a new service magneto flywheel.
- 3. To verify the correct location of the factory timing mark.
- 4. To detect a wrong magneto flywheel.

To verify the position of the timing mark on the magneto flywheel or to scribe a timing mark, proceed as follows:

- 1. Clean the area around the spark plugs, and remove them.
- 2. Remove the rewind starter from the engine.
- 3. Install the TDC gauge in the spark plug hole, (magneto side) and adjust as follows:
  - a. Position the magneto flywheel at approximately TDC.



TYPICAL


- TDC gauge on MAG side
   MAG side piston at TDC
- - b. Assemble the gauge to the adaptor and tighten the roller lock nut. Do not tighten the adaptor lock nut.
  - c. Screw the adaptor into the spark plug hole and tighten to prevent movement in the plug hole.
  - d. Position the dial face toward the magneto. Move the gauge down until the needle just begins to move, then move down a further 5 or 6 mm (approximately 1/4 in). Tighten adaptor lock nut by hand.
- 4. Locate the piston TDC position as follows:
  - a. Slowly rotate the magneto flywheel back and forth across TDC while observing the needle. Note that the needle stops moving only as the piston is changing direction.

#### Section 06 ELECTRICAL Subsection 02 (IGNITION TIMING)

- b. Rotate the dial face so that "0" is in line with the needle when it stops moving.
- c. Again, slowly rotate the magneto flywheel back and forth across TDC and adjust the dial face to "0", until the needle always stops exactly at "0" before changing direction.
- d. "0" now indicates exact TDC.
- 5. Verify the position of the timing mark on the magneto flywheel as follows:

**NOTE:** When checking timing, certain procedures require that the magneto flywheel be turned in a clockwise direction, viewed facing the magneto. If it is necessary to turn back (counterclockwise) for any reason, rotate the magneto flywheel at least one-quarter turn counterclockwise, and then rotate it clockwise. The last magneto flywheel movement when making a critical check must always be in a clockwise direction, to ensure that the slack in engine moving parts is taken-up.

- a. Rotate the magneto flywheel counterclockwise, one-quarter turn then carefully rotate it clockwise until the needle indicates the specified measurement, indicated in TECH-NICAL DATA 10.
- b. Make sure that the dot **located on the side** of the magneto flywheel protrusion perfectly aligns with center of trigger coil core, refer to illustration.
- c. If the marks do not align, loosen trigger coil screws and move trigger coil to align dot with center of trigger coil core.



Dot aligned with center of trigger coil core
 Retard

3. Advance

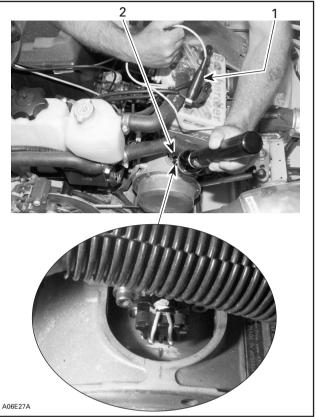
**NOTE:** These marks can not be used to check dynamic (with engine running) ignition timing with a timing light: an other mark is scribed on magneto flywheel or damper for this purpose. When flywheel protrusion dot aligns with center of trigger coil core, flywheel mark and crankcase center mark must be aligned.

## Checking Ignition Timing

Use timing light (P/N 529 0319 00).

To check the ignition timing, refer to illustration and proceed as follows:

**NOTE:** Engine should be cold when checking timing. Do not idle engine for more than 20 seconds and make checks quickly.




Place ski tips against a wall, raise rear of vehicle on a stand, so that track does not contact the ground. Do not allow anyone in front of or behind the vehicle while engine is running. Keep clear of track and do not wear loose clothing which can get caught in moving parts.

1. Connect the timing light pick-up to a spark plug cable and the power connections to the battery.

**NOTE:** To avoid an incorrect reading due to parallax, view the magneto flywheel and the crankcase timing marks in a straight line.

2. Start the engine and point timing light straight in line with the crankcase timing mark. Bring engine to 6000 RPM for a brief instant.



TYPICAL

1. Timing light pick-up on MAG side

2. Timing inspection hole

The magneto/damper mark must be aligned with center mark. If not, move trigger coil as explained above and recheck ignition timing. Tolerance is  $\pm 1^{\circ}$ .

If the marks still do not align, a faulty trigger coil (check proper grounding of coil) or a faulty CDI module could be the cause: substitute one part at a time and recheck timing marks (check connectors condition prior to substituting any part).

# **SPARK PLUGS**

## **NGK SPARK PLUG**

All Models

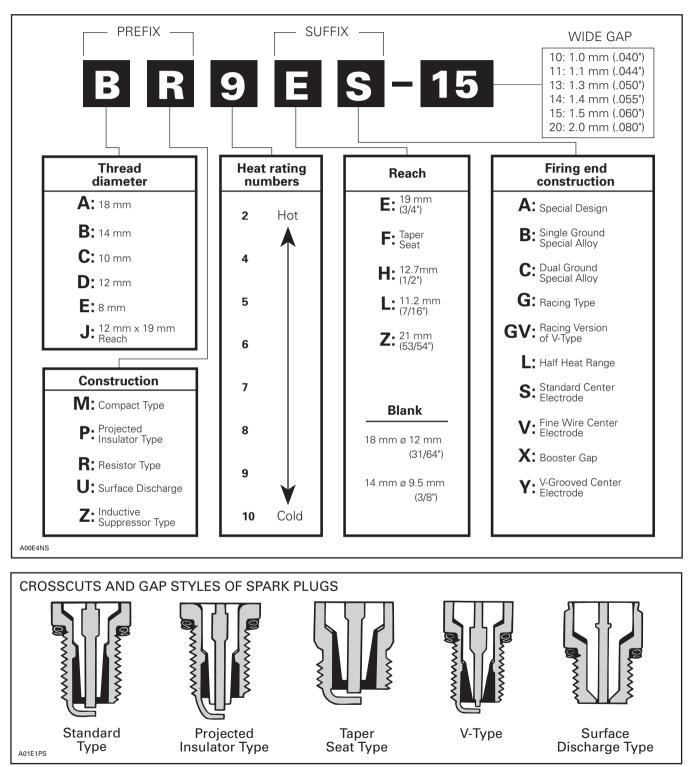
NGK SPARK PLUG NUMBERING SYSTEM

Bombardier uses NGK brand spark plugs on all its snowmobile models.

The heat range identification system is:

Low number hot plug

High number _____ ► cold plug


## **REFERENCE CHART**

NGK spark plugs used on Bombardier snowmobiles are covered in this manual:

- BR10ES
- BR9ES

Subsection 03 (SPARK PLUGS)

## **DESIGN SYMBOLS USED IN NGK SPARK PLUGS**



## DISASSEMBLY

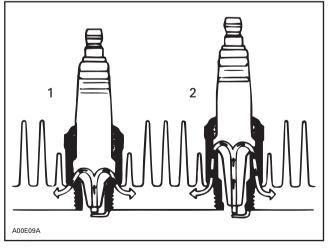
First unscrew the spark plug 1 turn.

Clean the spark plug and cylinder head with pressurized air, then completely unscrew.

# • WARNING

Whenever using compressed air, always wear protective eye wear.

# HEAT RANGE


The proper operating temperature or heat range of the spark plugs is determined by the spark plug ability to dissipate the heat generated by combustion.

The longer the heat path between the electrode tip to the plug shell, the hotter the spark plug operating temperature will be — and inversely, the shorter the heat path, the colder the operating temperature will be.

A **cold** type plug has a relatively short insulator nose and transfers heat very rapidly into the cylinder head.

Such a plug is used in heavy duty or continuous high speed operation to avoid overheating.

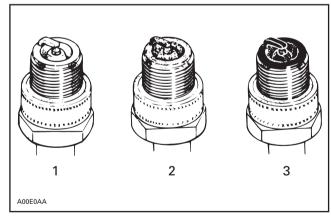
The **hot** type plug has a longer insulator nose and transfers heat more slowly away from its firing end. It runs hotter and burns off combustion deposits which might tend to foul the plug during prolonged idle or low speed operation.



1. Cold 2. Hot



Severe engine damage might occur if a wrong heat range plug is used.


A too hot plug will result in overheating and preignition, etc.

A **too cold** plug will result in fouling (shorting the spark plug) or may create carbon build up which can heat up red-hot and cause pre-ignition or detonation.

## FOULING

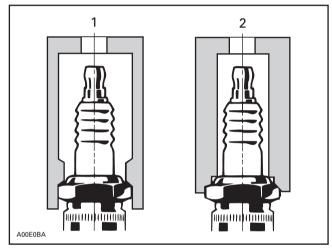
Fouling of the spark plug is indicated by irregular running of the engine, decreased engine speed due to misfiring, reduced performance, and increased fuel consumption. This is due to a loss of compression. Other possible causes are: prolonged idling, or running on a too rich mixture due to a faulty carburetor adjustment or incorrect fuel and/or fuel mixing. The plug face of a fouled spark plug has either a dry coating of soot or an oily, glossy coating given by an excess either of oil or of oil with soot. Such coatings form a conductive connection between the center electrode and ground.

# SPARK PLUG ANALYSIS



. Overheated (light grey) . Normal (brownish)

2. Normal (brownis 3. Fouled (black)


The plug electrode and piston dome reveal the condition of the engine, operating condition, method of driving and fuel mixture. For this reason it is advisable to inspect the spark plug at regular intervals, examining the plug electrode and the piston dome.

#### Section 06 ELECTRICAL Subsection 03 (SPARK PLUGS)

## SPARK PLUG INSTALLATION

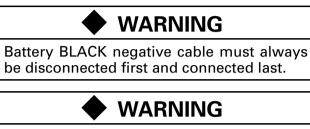
Prior to installation make sure that contact surfaces of the cylinder head and spark plug are free of grime.

- 1. Using a wire feeler gauge, set electrode gap according to TECHNICAL DATA 10.
- 2. Apply anti-seize lubricant (P/N 413 7010 00) over the spark plug threads to prevent possible seizure.
- 3. Hand screw spark plug into cylinder head and tighten with a torque wrench and a proper socket.



1. Proper socket

2. Improper socket

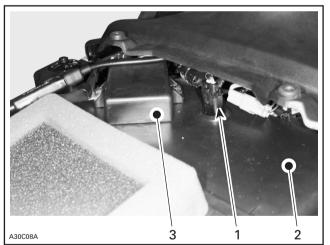

## SPARK PLUG TIGHTENING TORQUE

MODELS	SPARK PLUGS	TORQUE N•m (lbf•ft)
All models	NGK	27 (20)

# BATTERY

## REMOVAL

#### All Models




Never charge or boost battery while installed on vehicle.

## Air Intake Silencer Removal

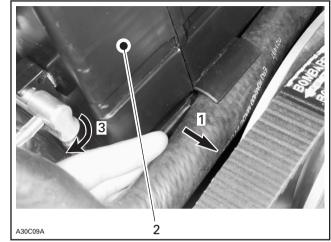
#### Grand Touring SE Only

Unplug air temperature sensor connector from air intake silencer and remove DPM module, as shown in the next photo.



1. Air temperature sensor

- Air intake silencer 2. 3.
- DPM module


#### All Models

Detach hose from air intake silencer, as shown in the next photo.

#### Grand Touring SE Only

Then twist DPM manifold and detach from air intake silencer.

#### All Models



- Detach hose
- Air intake silencer

3. Detach DPM manifold (GT SE only)

Remove air intake silencer.

Unfasten battery retaining strips.

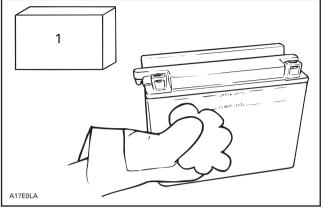
Open strips.

Remove vent tube.

Withdraw battery from vehicle being careful not lean it so that electrolyte flows out of vent tube.

# CAUTION

Should any electrolyte spillage occur, immediately wash off with a solution of baking soda and water to prevent damage to vehicle components.


## CLEANING

Clean the battery, battery casing, vent tube, caps, cables and battery posts using a solution of baking soda and water.



Do not allow cleaning solution to enter battery interior since it will destroy the electrolyte.

Subsection 04 (BATTERY)



1. Baking soda

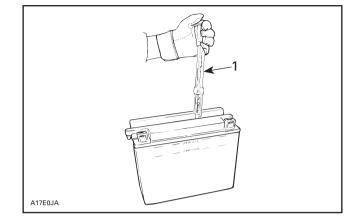
Remove corrosion from battery cable terminals and battery posts using a firm wire brush.

## INSPECTION

Visually inspect battery case for cracks or other possible damage. If case is damaged, replace battery and thoroughly clean battery tray and close area with water and baking soda.

## WARNING

Should the battery casing be damaged, wear a suitable pair of non-absorbent gloves when removing the battery by hand.


Inspect battery posts for security of mounting.

Inspect for cracked or damaged battery caps, replace defective caps.

## WARNING

Battery caps do not have vent holes. Make sure that vent tube is not obstructed.

## HYDROMETER TEST



1. Specific gravity 1.260

A hydrometer measures the charge of a battery in terms of specific gravity of the electrolyte. Most hydrometers give a true reading at 27°C (80°F).

In order to obtain correct readings, adjust the initial reading by **adding** .004 points to the hydrometer readings for each 5.5°C (10°F) **above 27°C** (80°F) and by subtracting .004 point for every 5.5°C (10°F) below 27°C (80°F).

This chart will be useful to find the correct reading.

	ROLYTE RATURE	OPERATI	ον το Γ	PERFORM			
°C	°F						
38 32	100 90	add	to the reading				
27	80	correct reading					
21 16 10 4 -1 -7 -12 -18 -23 -29 -34 -40	70 60 50 40 30 20 10 0 -10 -20 -30 -40	subtract	.004 .008 .012 .016 .020 .024 .028 .032 .036 .040 .044 .048	from the reading			

#### EXAMPLE NO. 1

Temperature below 27°C (80°F): Hydrometer reading: 1.250 Electrolyte temperature: -7°C (20°F) Subtract .024 Sp. Gr. Corrected Sp. Gr. is 1.226

#### EXAMPLE NO. 2

Temperature above 27°C (80°F): Hydrometer reading: 1.235 Electrolyte temperature: 38°C (100°F) Add .008 Sp. Gr. Corrected Sp. Gr. is 1.243

# CAUTION

Do not install a partially charged battery on a snowmobile since the casing might crack at freezing temperature. The following chart shows the freezing point of the electrolyte in relation to the charge of the battery.

TEMPERATURE CORRECTED SPECIFIC GRAVITY	BATTERY CHARGE	FREEZING POINT OF ELECTROLYTE
1.260	Fully charged	-59°C (-74°F)
1.230	3/4 charged	-40°C (-40°F)
1.200	1/2 charged	-27°C (-16°F)
1.170	1/4 charged	-18°C (0°F)
1.110	Discharged	-7°C (+19F)

## **BATTERY STORAGE**

Disconnect and remove battery from the vehicle. Check electrolyte level in each cell, add distilled water up to upper level line.



#### Do not overfill.

The battery must always be stored in fully charged condition. If required, charge until specific gravity of 1.260 is obtained.

## CAUTION

Battery electrolyte temperature must not exceed 50°C (122°F). The casing should not feel hot.

Clean battery terminals and cable connections using a wire brush. Apply a light coat of dielectric grease (P/N 413 7017 00) or petroleum jelly on terminals.

Clean battery casing and caps using a solution of baking soda and water. Do not allow cleaning solution to enter battery, otherwise it will destroy the electrolyte. Rinse battery with clear water and dry well using a clean cloth.

Store battery on a wooden shelf in a cool dry place. Such conditions reduce self-discharging and keep fluid evaporation to a minimum.

During the storage period, recheck electrolyte level and specific gravity readings at least every 40 days. As necessary, keep the battery at its upper level line and near full charge as possible (trickle charge).

## ACTIVATION OF NEW BATTERY



Never charge or boost battery while installed on vehicle.

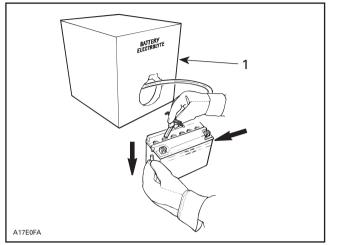
## CAUTION

Prior to charging the battery, always remove it from the vehicle to prevent electrolyte spillage.

A new battery is factory fresh dry charged. For storage purposes, it is fitted with a temporary sealing tube.

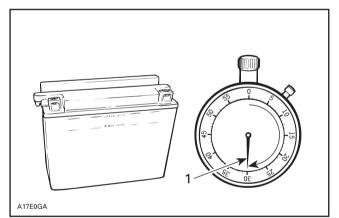
Do not remove the sealing tube or loosen battery caps unless activation is desired.

In case of accidental premature removal of caps or sealing tube, battery should be given a full charge.


Perform the following operations anytime a new battery is to be installed.

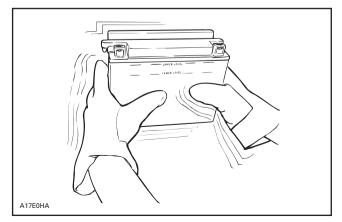
1. Remove the sealing tube from the vent elbow. Install vent tube, included in the battery kit, to battery elbow.

# WARNING

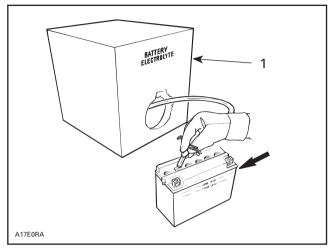

Failure to remove the sealing tube could result in an explosion.

Subsection 04 (BATTERY)

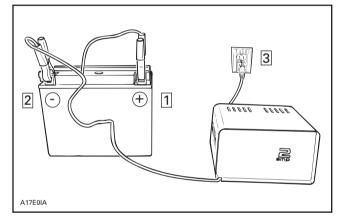



^{1.} Battery electrolyte

- 2. Remove caps and fill battery to UPPER LEVEL line with electrolyte (specific gravity: 1.260 at 20°C (68°F)).
- 3. Allow the battery to stand for 30 minutes MIN-IMUM so that electrolyte soaks through battery cells.




1. 30 minutes

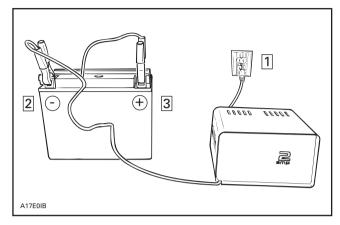

4. Allow gas bubbles to escape by lightly shaking battery by hand.



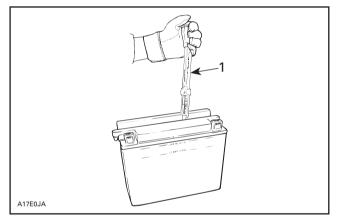
5. Readjust the electrolyte level to the UPPER LEVEL line.



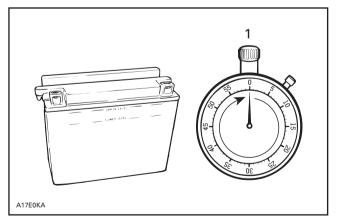
- 1. Battery electrolyte
- 6. Connect a 2 A battery charger for 10 to 20 hours.




# CAUTION

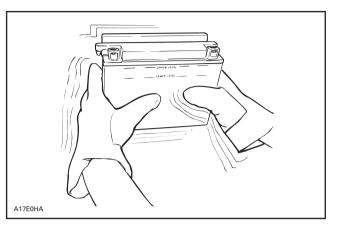

If charging rate raises higher than 2.4 A reduce it immediately. If cell temperature rises higher than 50°C (122°F) (if the casing feels hot) discontinue charging temporarily or reduce the charging rate.

# WARNING

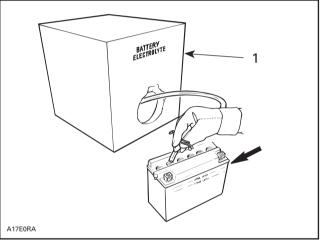

Gases given off by a battery being charged are highly explosive. Always charge in a well ventilated area. Keep battery away from cigarettes or open flames. Always turn battery charger off prior to disconnecting cables. Otherwise a spark will occur and battery might explode. 7. Disconnect battery charger.



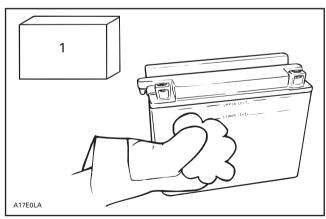
8. Test battery state of charge. Use a hydrometer.




- 1. Specific gravity 1.260
- 9. Let battery settle for 1 hour.




1. 60 minutes


10. Allow gas bubbles to escape by lightly shake battery.



11. Readjust electrolyte level.



- 1. Battery electrolyte
- 12. Reinstall caps and clean any electrolyte spillage using a solution of baking soda and water.



1. Baking soda

Subsection 04 (BATTERY)

# CAUTION

Do not allow cleaning solution to enter battery interior since it will destroy the electrolyte.

**NOTE:** It is recommended to verify the battery charge once a month. If necessary, fully charge battery.

## SERVICING

#### Electrolyte Level

Since a battery has been activated (see above), add distilled water to top up electrolyte.

### TIPS FOR CHARGING A USED BATTERY

# CAUTION

Prior to charging the battery, always remove it from the vehicle to prevent electrolyte spillage.

For best results, battery should be charged when the electrolyte and the plates are at room temperature. A battery that is cold may not accept current for several hours after charging began.

Do not charge frozen battery. If the battery charge is very low, the battery may freeze. If it is suspected to be frozen, keep it in a heated area for about 2 hours before charging.

## WARNING

Do not place battery near open flame.

Time required to charge a battery will vary depending some factors such as:

 Battery temperature: Charging time is increased as the temperature goes down. The current accepted by a cold battery will remain low. As the battery warms up, it will accept a higher rate of charge.

- State of charge: Because the electrolyte is nearly pure water in a completely discharged battery, it cannot accept current as well as electrolyte. This is the reason the battery will not accept current when the charging cycle first begins. As the battery remains on the charger, the current from the charger causes the electrolytic acid content to rise which makes the electrolyte a better conductor and then, the battery will accept a higher charging rate.
- Type of charger: Battery chargers vary in the amount of voltage and current that they can supply. Therefore, time required for the battery to begin accepting measurable current will also vary.

# Charging a Very Flat or Completely Discharged Battery

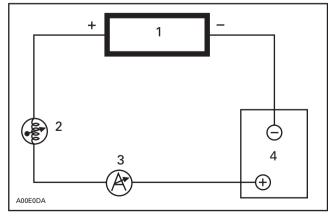
Unless this procedure is properly followed, a good battery may be needlessly replaced.

- Measure the voltage at the battery posts with an accurate voltmeter. If it is below 10 volts, the battery will accept current at very low rate, in term of milliamperes, because electrolyte is nearly pure water as explained above. It could be some time before the charging rate increases. Such low current flow may not be detectable on some charger ammeters and the battery will seem not to accept any charge.
- Only for this particular case, set the charger to a high rate.

**NOTE:** Some chargers have a polarity protection feature which prevents charging unless the charger leads are connected to the correct battery terminals. A completely discharged battery may not have enough voltage to activate this circuitry, even though the leads are connected properly. This will make it appear that the battery will not accept a charge. Follow the charger manufacturer's instruction telling how to bypass or override this circuitry so that the charger will turn on and charge a low-voltage battery.

 Since the battery chargers vary in the amount of voltage and current they provide, the time required for the battery to accept measurable charger current might be up to approximately 10 hours or more.

- If the charging current is not up to a measurable amount at the end of about 10 hours, the battery should be replaced.
- If the charging current is measurable before the end or at the end of about 10 hours, the battery is good and charging should be completed in the normal manner as specified in Activation of a new battery.
- It is recommended that any battery recharged by this procedure be load tested prior to returning it to service.


## BATTERY CHARGING EQUIPMENT

The battery charger should have an adjustable charging rate. Variable adjustment is preferred, but a unit which can be adjusted in small increments is acceptable.

The battery charger must be equipped with an ammeter capable of accurately measuring current of less than one ampere.

If the present charger is not adjustable to the proper current values, a rheostat can be connected in series with the battery to provide adjustment. 12 ohm, 50 watt rheostat, such as OHMITE — 0314 or MALLORY 50K 12P, are available from electronic parts supply shops and they are suitable for use with most chargers if the peak current is to be held below 2 A.

If you need an accurate ammeter, we recommend the use of: SHURITE — 5202 (0 to 3 A) or — 5203 (0 to 5 A) available from electronic parts supply shops.



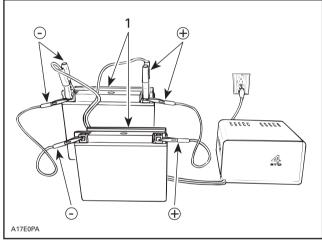
1. Charger

2. Rheostat 12  $\Omega$  50 W

3. Ammeter

4. Battery

For a service application and a permanent installation, both ammeter and rheostat can be built into a small box adjacent to your charger.


# CAUTION

Adequate ventilation MUST be provided to cool the rheostat.

#### Charging 2 or More Batteries at a Time

Connect all positives together and use a charger with a capacity (rated) equal to: number of batteries to be charged multiply by 2 A.

For example: Charging 5 batteries at a time requires a 10 A rated charger (5  $\times$  2 A = 10 A).



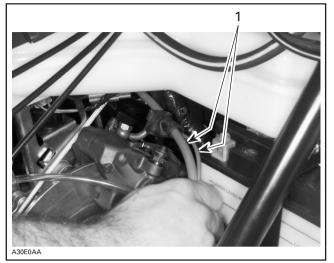
TYPICAL

1. Two batteries = 4 A

## INSTALLATION OF BATTERY

Position battery onto battery support on vehicle.

**NOTE:** To ease battery insertion, use soap with water.


Install vent tube on battery.

**NOTE:** Ensure that vent tube is not kinked or blocked. Cut vent tube if necessary.

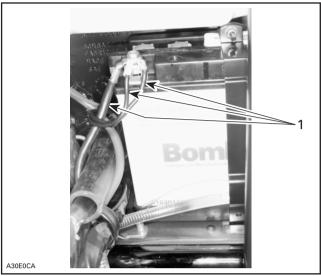
#### Red Positive Cable and Wire

Move RED positive cable and wire from right side of engine compartment to battery positive post, as shown in the next photo.

Subsection 04 (BATTERY)



1. Move RED positive cable and wire


Connect RED positive cable and RED wire to positive battery terminal. Refer to the following photo for proper cable positioning.



RED POSITIVE (+) BATTERY CABLE AND WIRE POSITIONING

## Black Negative Cable and Wires

Connect BLACK negative cable and BLACK wires LAST. Refer to the following photo for proper cable positioning.



1. BLACK negative (--) battery cable and wires positioning

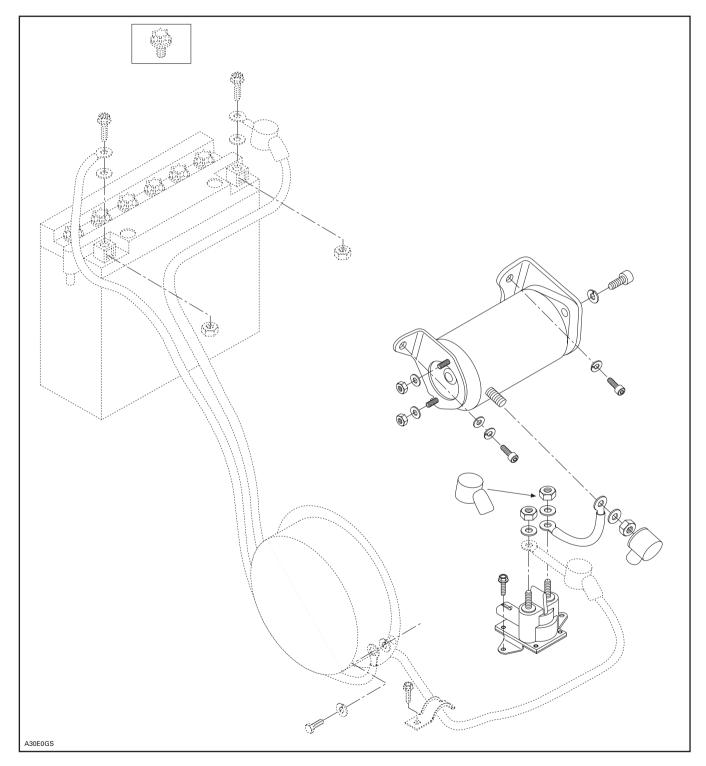
# WARNING

Always connect the battery cables exactly in the specified order. Connect RED positive cable first, then BLACK negative ground cable.

Apply silicone dielectric grease (P/N 413 7017 00) on battery posts and connectors.

Ensure vent tube is properly installed on battery elbow and chassis fitting.

Close and fasten retaining strips and ensure that RED positive battery cable and oil injection supply hose are routed into front retaining strip recess.


Reinstall air intake silencer with hose. On GT SE, install DPM manifold, DPM module and air temperature sensor.

# CAUTION

Negative battery terminal should always be disconnected FIRST and reconnected LAST.

#### Section 06 ELECTRICAL Subsection 05 (ELECTRIC STARTER)

# **ELECTRIC STARTER**



#### Section 06 ELECTRICAL Subsection 05 (ELECTRIC STARTER)

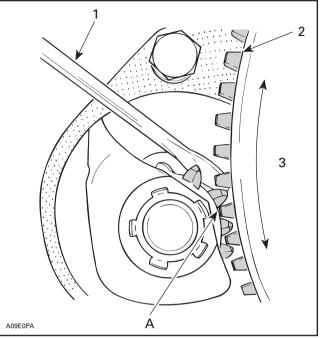
## **REMOVAL**

- Disconnect BLACK ground cable from battery.
- Disconnect RED positive cable from battery.
- Disconnect RED cable from starter solenoid switch.
- Remove starter from engine.

# CAUTION

Support drive housing adequately to prevent damage when pressing bushing.

# INSTALLATION


Make sure that starter and engine mating surfaces are free of grime. Serious trouble may arise if starter is not properly aligned.

Install starter.

NOTE: Check proper engaging depth of starter pinion teeth to ring gear teeth (see illustration). Install hardened washers (P/N 503 0079 00) between engine and starter supports accordingly.

# **CAUTION**

All starter bracket fasteners must be secured with Loctite 271 (P/N 413 7074 00).



Screwdriver pulling starter pinion 1

- 2. Ring gear
- 3. No excessive backlash A. 0.5 to 1.5 mm (.020 to .060 in)

Connect the RED battery cable and the RED wire to the large terminal of the solenoid.

Connect BLACK cable to battery.

# WARNING

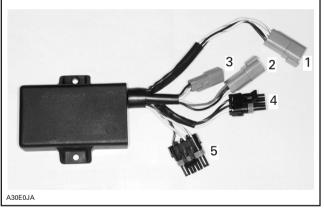
Always disconnect ground cable first and connect last.

## SOLENOID SWITCH

Inspect connections and clean as necessary. Solenoid switch condition can be checked with an ohmmeter. Install test probes on large connectors of solenoid when it is activated (+ on RED/ GREEN wire and - on solenoid body).

**IMPORTANT:** No current must be present on large cables when using ohmmeter, otherwise meter could be damaged.

# **TESTING PROCEDURE**

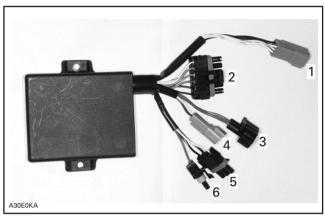

## **GENERAL**

The following chart gives the engine types with their implemented system.

ENGINE TYPE	IGNITION SYSTEM	CHARGING SYSTEM OUTPUT
599, 699 (except GT 700/SE) and 809	1 BOMBARDIER 290 W	290
699 GT 700/SE	<ul><li>② BOMBARDIER</li><li>360 W</li></ul>	360

#### Multi-Purpose Electronic Module (MPEM) Identification

The BOMBARDIER 290 W MPEM receives electricity produced by 2 generating coils (low and high speed). It is smaller than the 360 W MPEM.




#### BOMBARDIER 290 W MPEM

- 1. High tension coils, 3-01 housing
- 2. Generating coils (low and high speed), 10-05 housing

- Trigger coil, 10-04 housing
   DESS switch, housing 10-03
   DESS pilot lamp and ignition/kill switches, 10-01 housing

The Bombardier 360 W MPEM receives DC electricity produced by the unique coil.



#### TYPICAL - BOMBARDIER 360 W MPEM

- High tension coils, 3-01 housing 1.
- DESS pilot lamp, beeper and ignition/kill switches, 10-01 housing 2.
- 3. Battery/regulator connection, 10-05 housing

- battery, regulate connection, recombining
   Trigger coil, 10-04 housing
   DESS switch, housing 10-03
   GT SE only: RPM signal to DPM module, 10-02 housing

# SYSTEM TESTING

# IGNITION SYSTEM TESTING SEQUENCE

In the case of ignition problems, check the following in the prescribed order until the problem can be solved.

- 1. Sparking/spark plug condition.
- 2. Electrical connectors.
- 3. Ignition switches, DESS switch and emergency switch.
- 4. Ignition generator coil voltage.
- 5. Trigger coil.
- 6. Ignition module voltage.
- 7. High voltage coil output.
- 8. MPEM voltage supply.
- 9. MPEM.

# LIGHTING SYSTEM TESTING SEQUENCE

- 1. Electrical connectors.
- 2. Magneto output (lighting generator coil).

### **Testing Conditions**

Voltage measurements are always taken upon vehicle starting. Readings when the engine is running will be higher than indicated range. Part temperature must be approximately 20°C (68°F) (room temperature), otherwise readings could be distorted.

### Analysis of Readings

#### Voltage Readings

When testing the different magneto components, it is important to take into consideration that readings vary according to the force applied onto the manual starter. It is therefore important to employ enough force upon each trial.

The reading must be 3 times within or above the range indicated in the corresponding table. If the reading is too low, the part is considered to be defective and must be replaced.

#### **Resistance Readings**

Place multimeter selector switch to  $\Omega$  in order to measure resistance. Readings must be within the indicated range. Otherwise, the part is considered to be defective and must be replaced.

# CAUTION

When taking measurements, it is useless to try to start the vehicle since readings would then be distorted.

#### Intermittent Ignition Problems

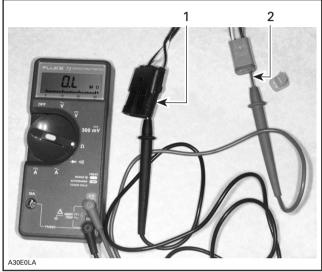
It is difficult to make a diagnostic in the case of intermittent ignition problems. Thus, problems occurring only when the engine operating temperature is normal must be checked in similar conditions.

In most cases when problems are caused by temperature or vibrations, these can only be solved by replacing parts. Most problems cannot be detected when the engine is stopped.

#### **Multiple Problems**

As a matter of fact, more that one component can be defective. As a result, if the problem remains although a part was replaced, start over the whole verification from the beginning in order to identify the other defective component.

## 1. SPARKING


During this operation, it is important to use the snowmobile spark plug and not a new one. Bring the plug in contact with the engine. If no spark is produced, replace the spark plug with a new one and do the test again.

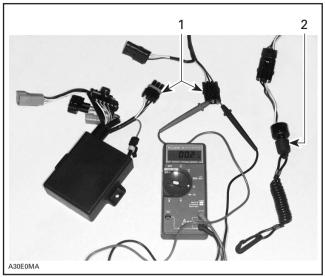
## 2. ELECTRICAL CONNECTOR TESTING

Make sure that none of the connectors are disconnected.

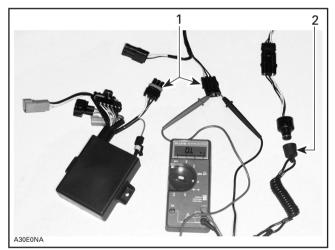
#### 3. IGNITION SWITCH, TETHER CORD SWITCH AND EMERGENCY SWITCH TESTING

Disconnect connector housing from engine and check resistance as indicated in IGNITION table.




TYPICAL — 290 W 1. BK/YL wire, 10-01 housing (harness side) 2. BK wire, 10-05 housing (harness side)

If readings are acceptable, go on to next step.

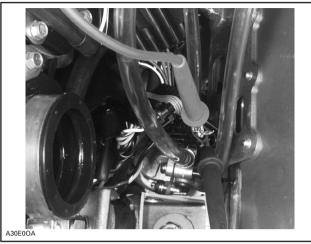

If readings are inadequate, individually check each switch as follows.

## **DESS Switch**

Unplug 10-03 housing connected to main wiring harness. Check using a multimeter by connecting probes to BLACK/GREEN and BLACK/WHITE wires. The multimeter should indicate a closed circuit (0.L  $_{\rm M\Omega}$ ) in operating position and a open circuit (0  $_{\Omega}$ ) in off position.



TYPICAL — HARNESS REMOVED FOR CLARITY 1. 10-03 housing disconnected 2. DESS cap in place




TYPICAL — HARNESS REMOVED FOR CLARITY

1. 10-03 housing disconnected

2. DESS cap removed

#### Section 06 ELECTRICAL Subsection 06 (TESTING PROCEDURE)



TYPICAL - IN-VEHICLE TESTING

If readings do not correspond to the above mentioned indications, replace switch.

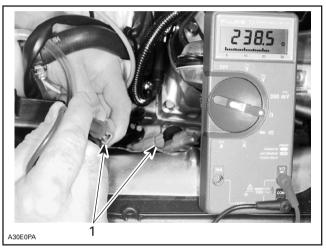
If none of these verifications are conclusive, the problem finds its source in the main wiring harness. Proceed as follows:

# 4. IGNITION GENERATOR COIL VOLTAGE TESTING

#### 290 W Model

### General

When manually starting the engine while the spark plug is installed, the engine will tend to accelerate beyond the compression point. This will result in higher magneto output power.

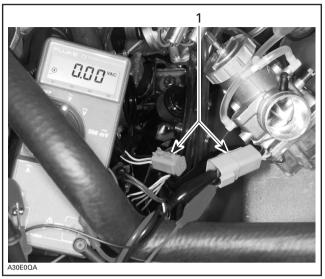

- 1. Disconnect 10-05 housing between the magneto and the wiring harness.
- 2. Connect multimeter probes to WHITE and RED wires and bring the selector switch to  $\tilde{V}$  and the scale to 00.0  $^{\text{VAC}}$ .
- 3. Activate the manual starter and check values indicated by the multimeter.
- 4. Repeat operation 3 times.
- 5. Compare readings with those appearing in the IGNITION table.

# **5. TRIGGER COIL TESTING**

### All Models

#### **Resistance Testing**

- 1. Connect probes to WHITE/YELLOW and BLUE/ YELLOW wires from trigger coil 10-04 housing.
- 2. Activate the manual starter and check values indicated by the multimeter.
- 3. Repeat operation 3 times.
- 4. Compare readings with those appearing in the IGNITION table.

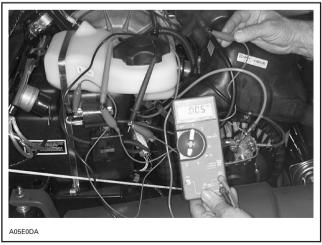



^{1. 10-04} housing

## 6. IGNITION MODULE VOLTAGE TESTING

#### All Models

- 1. Disconnect the 3-01 housing between module and high voltage coils.
- 2. Connect multimeter probes to WHITE/BLUE and BLACK wires coming out from module. Place the selector switch to  $\tilde{V}$  and the scale to  $00.0^{\text{VAC}}.$
- 3. Activate the manual starter and check values indicated by the multimeter.
- 4. Repeat operation 3 times.



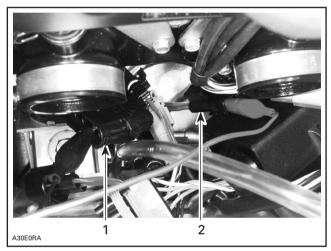

1. 3-01 housing

5. Compare readings with those appearing in the IGNITION table.

## 7. HIGH VOLTAGE COIL VOLTAGE TESTING

- 1. Disconnect spark plug cap from spark plug.
- 2. Fasten alligator clip to spark plug cable, near the spark plug.
- 3. Connect other multimeter wire to engine (ground), then place selector switch to  $\tilde{V}$  and scale to 0.00^{VAC}.
- 4. Activate the manual starter and check values indicated by the multimeter.
- 5. Repeat operation 3 times.




**TYPICAL** 

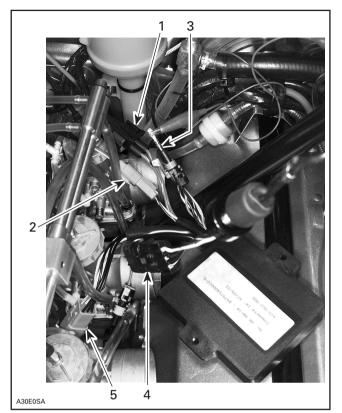
6. Compare readings with those appearing in the IGNITION table.

## 8. MPEM SUPPLY VOLTAGE TESTING

#### Grand Touring 700/SE only

- 1. Disconnect the 10-05 and 10-01 housings between module and main harness.
- 2. Connect multimeter probes to RED/BLUE and BLACK wires coming out from harness. Place the selector switch to  $\tilde{V}$  and the scale to 00.0^{VAC}.
- 3. Activate the manual starter and check values indicated by the multimeter.
- 4. Repeat operation 3 times.




- 10-01 housing 1. 2.
- 10-05 housing
- 5. Compare readings with those appearing in the IGNITION table.

# 9. MPEM TESTING

#### Grand Touring 700/SE Only

- 1. Disconnect the MPEM.
- 2. Install a known-good MPEM directly (not to the main harness). Connect DESS switch, trigger coil, high tension coils, ground (black wire of 10-01 housing), 10-05 housing to the diagnostic housing.

Subsection 06 (TESTING PROCEDURE)

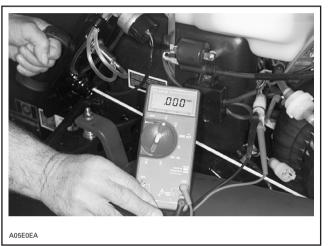


1

- Diagnostic housing Trigger housing10-05 housing 2
- 3 Ground (jumper wire directly on negative post of battery
- 4 DESS housing
- 5. High tension coils housing
- 3. Activate the manual starter and check values indicated by the multimeter.

# CONCLUSION

### All Models


If none of the above testing operations produced valid results, it is strongly recommended to keep on testing according to the list appearing in the Resistance column of the IGNITION table.

Set the multimeter as indicated.

## LIGHTING GENERATOR COIL **VOLTAGE TESTING**

**NOTE:** For 290 W system, the lighting generator coil is not part of the ignition system. It is a selfcontained system used to supply current to the lighting system and to other devices working on alternating current. However, this system can be tested using a multimeter.

- 1. Disconnect round 2-01 housing from engine (YELLOW, YELLOW wires).
- 2. Connect multimeter probes to YELLOW wires, then place selector switch to  $\tilde{V}$  and scale to 0.00^{VAC}.
- 3. Activate the manual starter and check values indicated by the multimeter.
- 4. Repeat operation 3 times.



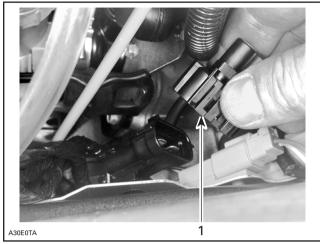
TYPICAL

5. Compare readings with those appearing in the LIGHTING table.

# CONCLUSION

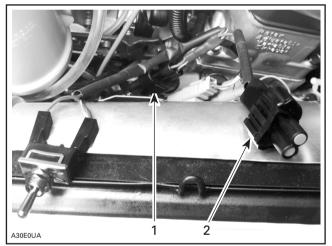
If none of the above testing operations produced valid results, it is strongly recommended to keep on testing according to the list appearing in the Resistance column of the LIGHTING table.

Set the multimeter as indicated.


## ELECTRIC ACCESSORIES TESTING

## Grand Touring 700/SE Only

All accessories are supplied with electricity only when engine is running at 800 RPM or faster.


The MPEM controls the electricity supply to accessories. To short-circuit this feature, avoiding to let engine idling during testing, connect the bypass wires (P/N 529 0333 00).

1. Remove protective cap from 2-03 housing.



1. Cap

2. Connect bypass wires (P/N 529 0333 00) to the harness housing. Install cap on the other bypass housing.



- Bypass wires connected
   Cap in unoccupied housing
- 3. Turn bypass switch on. All accessories, except the buzzer, receive the battery voltage.

Subsection 06 (TESTING PROCEDURE)

			IGNITIO	N SYSTEM TES	STING (CK3 se	ries — 290 V	/)	
	Taatta ha	to be Wire Multimeter Resistance Ω Voltage V		tage V				
Part	Test to be performed	color	probe connection	Value (Ohms)	Multimeter scale	Value (Volts)	Multimeter scale	Note
Stop switch	Running insulation	BK and BK/YL	10-05-2-F 10-01A-M	0.L	00.0 _{MΩ}	—		No stop switch must be operational.
	Continuity in stop position	BK and BK/YL	10-05-2-F 10-01A-M	00.0 - 00.5	00.0 _Ω	_		Only one stop switch must be operational. Test one at a time.
	Insulation in stop position	BK/GN and BK/WH	10-03B-M 10-03C-M	0.L	00.0 _{MΩ}	_		Tether cord cap should be off.
	Running continuity	BK/GN and BK/WH	10-03B-M 10-03C-M	00.0 - 00.5	00.0 _Ω	_	_	Tether cord cap should be in place.
lgnition generator	Output	WH and RD	10-05-3-F 10-05-1-F	24.0 - 36.0	00.0 _Ω	30.0 - 50.0	00.0 ^{VAC}	The test can be done on 2-03 housing, but this would not
coil	Ουτρατ	WH and BK/RD	10-05-3-F 10-05-4-F	3.0 - 6.0	00.0 _Ω	4.0 - 10.0	00.0 ^{VAC}	validate the harness.
	Coil insulation	BK and RD	10-05-2-F 10-05-1-F	0.L	00.0 _{MΩ}	_		
	Ground continuity	BK and engine	10-05-2-F and engine	00.0 - 00.5	00.0 _Ω	_	_	The term "engine" refers to the engine metal parts connected to the magneto housing.
Trigger coil	Resistance and output	WH/YL and BL/YL	10-04-2-F 10-04-1-F	190 - 270	00.0 _Ω	.200350	.000 ^{vac}	The test can be done on 2-02 housing, but this would not validate the harness.
lgnition module	Output voltage	WH/BL and BK	3-01-(1,2,3)-M 3-01-(6,5,4)-M	—	—	10.0 - 20.0 3 times	00.0 ^{VAC}	No switch must be operational and tether cord cap must be in place.
High voltage coil	Primary winding resistance	WH/BL and BK	3-01-(1,2,3)-F 3-01-(6,5.4)-F	0.00 - 00.5 3 times	00.0 _Ω	_		
	Secondary winding resistance (spark plug cap included)	Spark plug cap and engine	In spark plug cap and on engine	13.5 K - 16.5 K 3 times	00.0 _{κΩ}	Do not n		CAUTION tage coil output voltage.
	Secondary winding resistance (without spark plug cap)	BK and engine	In spark plug wire and on engine	8.5 K - 11.5 K 3 times	00.0 _{κΩ}	Do not n		CAUTION tage coil output voltage.
	Secondary winding voltage	BK and engine	On spark plug wire and on engine		_	1.5 - 2.5 3 times	0.00 ^{VAC}	The measurement must be taken on the spark plug wire (without the spark plug).
Spark plug cap	Cap resistance	_	Spark plug side and wire side	4.0 K - 6.0 K 3 times	00.0 _{KΩ}	—		

M: Male F: Female

NOTE: Stop switches include the ignition switch and the emergency cut-out switch.

It is important to take note that voltage measurements must be taken while starting the vehicle using the manual starter.

Voltages obtained upon starting are proportional to the force applied onto the manual starter. A low voltage is therefore normal under a low cranking force.

Perform testing in the prescribed order and replace any parts not performing according to specifications. It is important to resume all tests when replacing a component.

	LIGHTING SYSTEM TESTING (CK3 series — 290 W)										
	Test to be	Wire	Multimeter	Resistance $\Omega$		Voltage V					
Part	performed	color	probe connection	Value (Ohms)	Multimeter scale	Value (Volts)	Multimeter scale	Note			
Lighting generator coil	Output	YL and YL	2-01B-F and 2-01C-F	00.0 - 00.5	00.0 _Ω	3.0 - 7.0	00.0 ^{VAC}				
	Coil insulation	YL and engine	2-01(B,C)-F and engine	0.L	00.0 _{MΩ}	_	_	The term "engine" refers to the engine metal parts connected to the magneto housing.			
	Ground continuity	BK and engine	2-01A-F and engine	00.0 - 00.5	00.0 _Ω	_	—				

M: Male F: Female

#### NOTE:

It is important to take note that voltage measurements must be taken while starting the vehicle using the manual starter.

Voltages obtained upon starting are proportional to the force applied onto the manual starter. A low voltage is therefore normal under a low cranking force.

Perform testing in the prescribed order and replace any parts not performing according to specifications.

It is important to resume all tests when replacing a component.

Subsection 06 (TESTING PROCEDURE)

			IGNITIO	N SYSTEM TE	STING (CK3 se	ries — 360 V	V)	
	<b>T</b>	14/	Multimeter	Resista	ance $\Omega$	Vol	tage V	
Part	Test to be performed	Wire color	probe connection	Value (Ohms)	Multimeter scale	Value (Volts)	Multimeter scale	Note
Stop switch	Running insulation	BK and BK/YL	10-01B-F 10-01A-M	0.L	00.0 _{MΩ}			No stop switch must be operational.
lgnition switch kill switch	Continuity in stop position	BK and BK/YL	10-01B-F 10-01A-M	00.0 - 00.5	00.0 _Ω	—	_	Only one stop switch must be operational. Test one at a time.
DESS switch	Insulation in stop position	BK/GN and BK/WH	10-03B-M 10-03C-M	0.L	00.0 _{MΩ}	_		Tether cord cap must be off.
	Running continuity	BK/GN and BK/WH	10-03B-M 10-03C-M	00.0 - 00.5	00.0 _Ω	—		Tether cord cap must be in place.
MPEM supply	Output	RD/BL and BK	10-05A-M 10-01B-M		_	2.00 - 3.50	00.0 ^{vac}	The test can be done on 2-03A-M housing of diagnostic post and engine, but this would not completely validate the harness.
	Ground continuity	BK and engine	10-01B-M and engine	00.0 - 00.5	00.0 _Ω	_	_	The term "engine" refers to the engine metal parts connected to the magneto housing.
Trigger coil	Resistance and output	WH/YL and BL/YL	10-04-2-F 10-04-1-F	190 - 270	00.0 _Ω	.200350	.000 ^{vac}	The test can be done on 2-02 housing, but this would not validate the harness.
lgnition module	Output voltage	WH/BL and BK	3-01-(1,2,3)-M 3-01-(6,5,4)-M		_	10.0 - 20.0 3 times	00.0 ^{VAC}	No switch must be operational and tether cord cap must be in place.
High voltage coil	Primary winding resistance	WH/BL and BK	3-01-(1,2,3)-F 3-01-(6,5.4)-F	0.00 - 00.5 3 times	00.0 _Ω	_		
	Secondary winding resistance (spark plug cap included)	Spark plug cap and engine	In spark plug cap and on engine	13.5 K - 16.5 K 3 times	00.0 _{κΩ}	CAUTION Do not measure high voltage coil output voltage.		
	Secondary winding resistance (without spark plug cap)	BK and engine	In spark plug wire and on engine	8.5 K - 11.5 K 3 times	00.0 _{KΩ}	<b>CAUTION</b> Do not measure high voltage coil output voltage.		
	Secondary winding voltage	BK and engine	On spark plug wire and on engine		_	1.5 - 2.5 3 times	0.00 ^{VAC}	The measurement must be taken on the spark plug wire (without the spark plug).
Spark plug cap	Cap resistance		Spark plug side and wire side	4.0 K - 6.0 K 3 times	00.0 _{KΩ}	_		

M: Male F: Female

NOTE: Stop switches include the ignition switch, and the emergency cut-out switch.

It is important to take note that voltage measurements must be taken while starting the vehicle using the manual starter.

Voltages obtained upon starting are proportional to the force applied onto the manual starter. A low voltage is therefore normal under a low cranking force.

Perform testing in the prescribed order and replace any parts not performing according to specifications. It is important to resume all tests when replacing a component.

	LIGHTING SYSTEM TESTING (CK3 series — 360 W)											
	Test to be	Wire	Multimeter	Resistance $\Omega$		Vo	tage V					
Part	performed	color	probe connection	Value (Ohms)	Multimeter scale	Value (Volts)	Multimeter scale	Note				
Lighting generator coil	Output	YL and YL	2-01(A,B,C)-F and 2-01(A,B,C)-F	00.0 - 00.5 3 times	00.0 _Ω	3.5 - 5.5 3 times	00.0 ^{vac}	Do the test between A and B, A and C and B and C.				
	Coil insulation	YL and engine	2-01(A,B,C)-F and engine	0.L	00.0 _{MΩ}	_	_	The term "engine" refers to the engine metal parts connected to the magneto housing.				

M: Male F: Female

#### NOTE:

It is important to take note that voltage measurements must be taken while starting the vehicle using the manual starter.

Voltages obtained upon starting are proportional to the force applied onto the manual starter. A low voltage is therefore normal under a low cranking force.

Perform testing in the prescribed order and replace any parts not performing according to specifications.

It is important to resume all tests when replacing a component.

## **INSPECTION OF AC CIRCUIT ISOLATION**

#### All CK3 Models

If AC circuit is not isolated from frame, headlamp beam will weaken.

## **INSPECTION**

Disconnect regulator/rectifier.

Connect one digital ohmmeter probe (needle ohmmeter will not offer enough precision) to frame and other probe to one of 2 YELLOW magneto wires.

Measured resistance must be infinite. If such is not the case, it means there is a connection between AC circuit and DC circuit.

Disconnect one accessory at the time to identify the faulty circuit.

## **INSPECTION OF HEATING ELEMENTS**

All measurements must be performed at 21°C (70°F).

### Throttle Lever Heating Element

#### **Resistance Measurement**

#### Formula III and Mach 1 Series

HIGH	YELLOW/BLACK wire	1.96 to
INTENSITY	BROWN wire	3.64 ohms
LOW	YELLOW/BLACK wire	8.05 to
INTENSITY	BROWN/YELLOW wire	14.95 ohms

#### Grand Touring and Mach Z Series

YELLOW/BLACK wire BROWN wire	53 to 63 ohms
---------------------------------	---------------

#### **Current Measurement**

#### Formula III and Mach 1 Series

HIGH INTENSITY	BROWN wire	0.23 A minimum
LOW INTENSITY	BROWN/YELLOW wire	0.13 A minimum

#### Handlebar Grip Heating Element

**Resistance Measurement** 

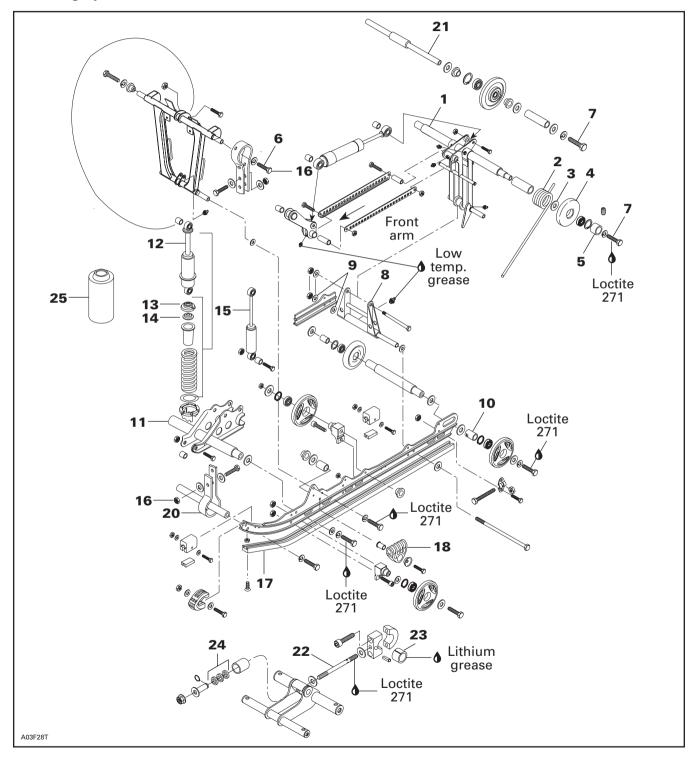
#### Formula III and Mach 1 Series

#### Formula III and Mach 1/Z Series

HIGH INTENSITYYELLOW/BLACK wire8.73 to ①0RANGE wire10.67 ohm
-----------------------------------------------------------------

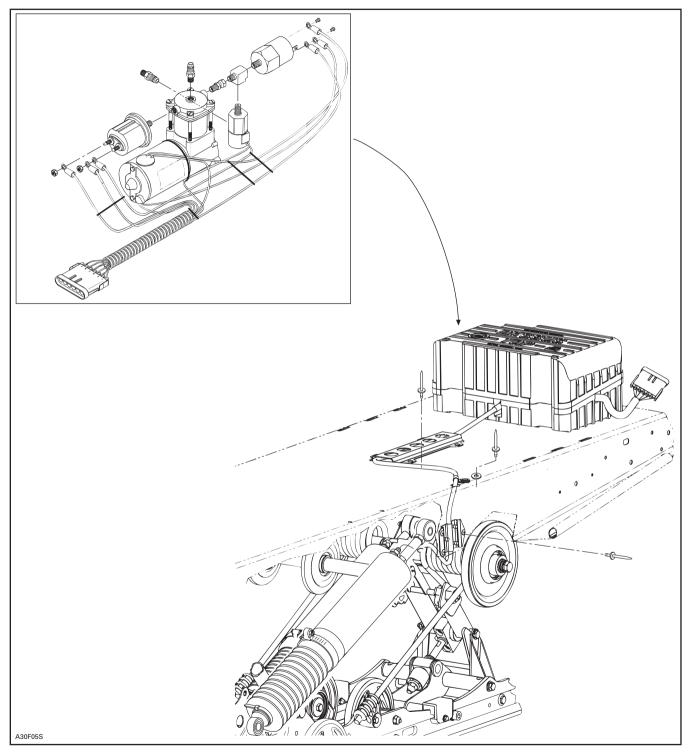
#### Grand Touring 700/SE

RED/YELLOW wire ORANGE wire	6.5 to 8 ohms ①
--------------------------------	-----------------


 When measuring resistance at terminals the actual value will be half the measurement in table. The reason for that is the elements are connected in parallel. Therefore the total resistance is half the resistance of one element.

# **TABLE OF CONTENTS**

SC-10 SUSPENSION	07-02-1
COMPONENT REMOVAL AND INSTALLATION	07-02-3
REMOVAL	07-02-5
DISASSEMBLY AND ASSEMBLY	07-02-5
SHOCK ABSORBER INSPECTION	07-02-7
INSTALLATION	07-02-8
RIDE ADJUSTMENT	07-02-8
LUBRICATION	07-02-9
DRIVE AXLE	07-03-1
REMOVAL	07-03-2
DISASSEMBLY	07-03-2
ASSEMBLY	07-03-2
AXIAL PLAY	07-03-4
INSTALLATION	07-03-6
LUBRICATION	07-03-7
ADJUSTMENT	07-03-7
TRACK	07-04-1
TRACK TYPE APPLICATION	07-04-1
GENERAL	07-04-1
INSPECTION	07-04-1
REMOVAL	07-04-1
INSTALLATION	07-04-1


# **SC-10 SUSPENSION**

SC-10 High-performance on All CK3 Models



Subsection 02 (SC-10 SUSPENSION)

Air Suspension Components on GT SE Only

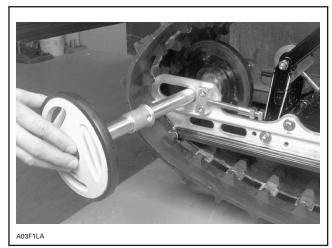


Subsection 02 (SC-10 SUSPENSION)

### COMPONENT REMOVAL AND **INSTALLATION**

Lift rear of vehicle and support it off the ground.

### 21, Rear Axle


Completely loosen track tension.

Unscrew one rear idler wheel screw.

Pull out rear axle from opposite side of offset inner wheel. Proceed on either sides for models with 4 wheels on rear axle.

At assembly, temporary loosen rear shackle lower pivot nut and ACM (Acceleration and Control Modulator) support rear bolt.

Align spacer hole with adjusting bolt.



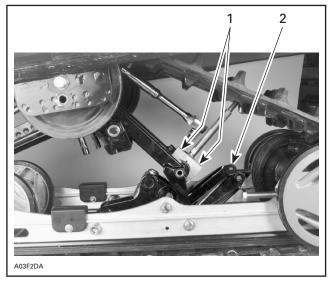
TYPICAL

### SC-10 HP and XC

### 22, Threaded Rod

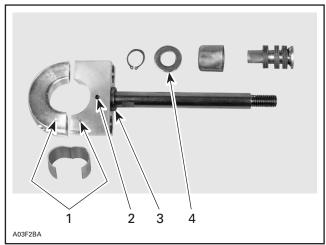
**NOTE:** Do not disassemble threaded rod ass'y needlessly.

Lift rear of vehicle.


Unhook rear springs.

Unscrew threaded rod nut.

Remove through bolt from shackle.


Swing shackle rearward.

Collapse suspension in order to disengage threaded rod from its support.



Block ass'y Allen screw 1. 2 Schackle

Unscrew block ass'y Allen screws.



- Marks 1
- Roll pin Smaller washer 2.
- Smaller washe
   Larger washer

## 23, Cushion

Separate pivot block.

Remove cushion.

Apply lithium grease on cushion at reassembly.

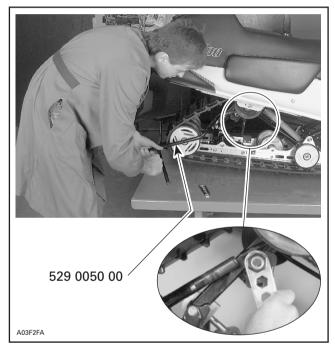
At assembly, match marked side of both pivot blocks.

When cup is disassembled, it may be too difficult to install circlip before reinstalling this assembly. Install all parts and the circlip loosely around threaded rod. Compress rear of vehicle or lift the front to easily install circlip in its groove.

Subsection 02 (SC-10 SUSPENSION)

### 25, ACM Support

Remove threaded rod ass'y. Loosen rear axle screw on one side and rear shackle screws.


Unbolt ACM support and remove it.

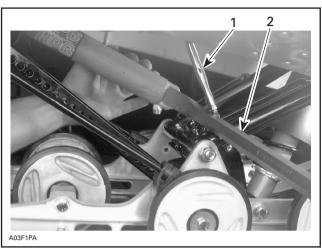
Remove cup.

#### 15, Rear Shock

Lift rear of vehicle.

Slightly turn adjusting cam to expose spring end. Using spring installer (P/N 529 0050 00), remove left spring from adjusting cam.




Remove nut on top end of shock.

Remove nut on bottom end of shock. Pry up shock bottom end to ease removing bolt (gas shock only). See installation illustration below.

Installation is reverse of removal procedure. To easily compress gas shock absorber, use a pry bar and locking pliers as a stopper.

## CAUTION

Take care not to damage grease fitting.



Locking pliers
 Pry bar

## 12, Front Shock

Unfasten one end of stopper strap. Unbolt shock and remove it.

## 2, Rear Spring

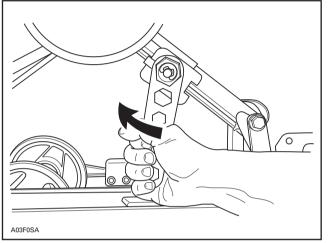
Remove spring ends from adjusting cams.

Unbolt rear arm top axle from chassis.

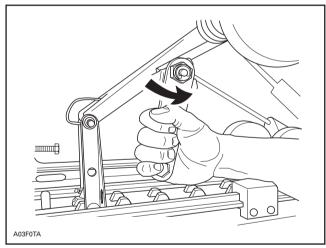
Unscrew set screws from locking ring at each end of top axle.

Remove locking rings (spacers on fan cooled models) and top idler wheels.

Remove springs.




At reassembly, wheel circlip must face outward.


## REMOVAL

### 19, Cam

Decrease spring preload by turning LH cam clockwise and RH cam counterclockwise.



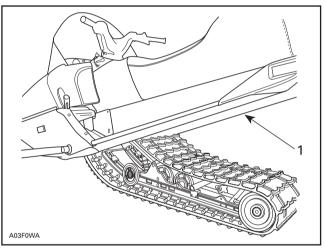
#### LH SIDE SHOWN



#### RH SIDE SHOWN

Lift rear of vehicle and support it off the ground. Loosen track tension.

### 7, Screw


Unscrew rear arm top axle from chassis.

**NOTE:** To prevent axle from turning when unscrewing screws assembled with threadlocker, proceed as follows:

- Knock on screw head and/or heat to break threadlocker bond.
- Loosen one screw then retighten.
- Remove the opposite screw.
- Remove the first one.

Unscrew center idler wheel axle from tunnel then remove.

Lift rear of vehicle at least 1 m (3 ft).

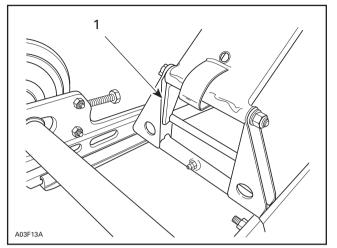


1. At least 1 m (3 ft)

### 6, Screw

Remove both screws retaining front arm to tunnel.

Remove suspension.


## DISASSEMBLY AND ASSEMBLY

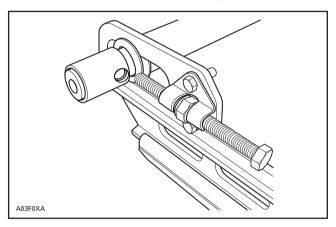
Inspect track thoroughly before reinstalling suspension. Refer to TRACK 07-04.

### 1, Rear Arm

At installation, rear arm stroke limiter must be on rear side.

Subsection 02 (SC-10 SUSPENSION)




^{1.} Stroke limiter on rear side

### 8,9, Pivot Arm and Flat Washer

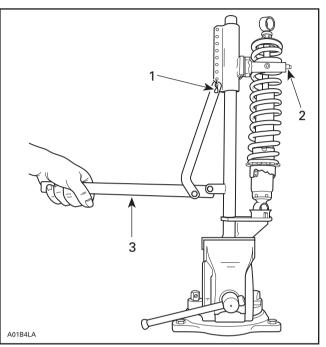
At installation pivot arm grease fitting must face rearward.

### 10, Outer Bushing

At installation, hole must face adjustment screw.

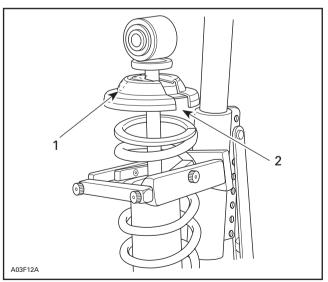


## 11, Axle


Note position of axles at disassembly. Axles with a paint stripe serve as idler wheel axles. These are more precise than those used as pivot axles. Idler wheel axles can be used as pivot axles but the opposite is not true.

# 12,13,14, Front Shock, Spring Stopper and Cap

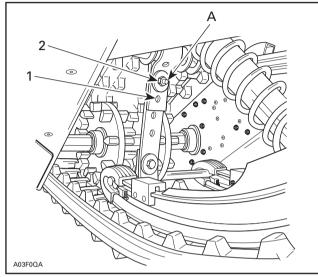
Use shock spring remover (P/N 529 0271 00) and put it in a vise. Mount shock in it and turn shock so that spring coils match spring compressor.


Close and lock bar. Adjust handle horizontal by changing position of clevis pin.

Push down on handle until it locks. Remove spring stopper and cap then release handle.



- 1. Clevis pin
- Bar
   Handle horizontal

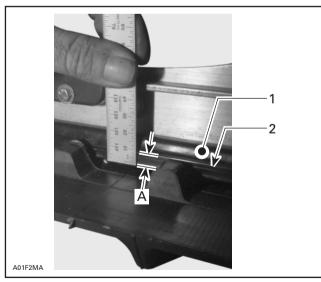

At installation, cap opening must be 180° from spring stopper opening.



- 1. Cap opening
- 2. Spring stopper opening

### 20, Stopper Strap

Inspect strap for wear or cracks, bolt and nut for tightness. If loose, inspect hole for deformation. Replace as required. Make sure it is attached through proper hole from the end. Refer to TECHNI-CAL DATA 10-03. Torque nut to 11 Nom (97 lbfoin).




1st hole

2. 2nd hole A. 11 N•m (97 lbf•in)

## 17, Slider Shoe

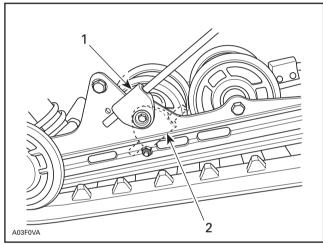
Measure slider shoes from the bottom to the 0.5 mm (.020 in) radius as shown on the next photo. Minimum thickness must be 2 mm (.080 in).



#### TYPICAL

- Slider shoe
- Molding line (this line is not the wear limit)
- A. Wear limit measurement (must be at least 2 mm (.080 in))

Replace slider shoes when wear limit is reached.


## **CAUTION**

Slider shoes must always be replaced in pairs.

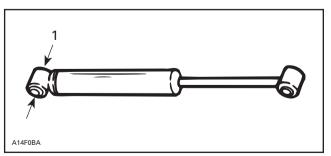
### 18, Spring Support



To avoid track damage, spring supports must be mounted upward.



**RIGHT SIDE SHOWN** 


Right position: upward
 Wrong position

## SHOCK ABSORBER INSPECTION

#### All Models Equipped with Hydraulic Shock

**NOTE:** Hydraulic shocks are painted black or dark gray.

Secure the shock body end in a vise with its rod upward.



1. Clamp

Subsection 02 (SC-10 SUSPENSION)

## CAUTION

#### Do not clamp directly on shock body.

Examine each shock for leaks. Extend and compress the piston several times over its entire stroke. Check that it moves smoothly and with uniform resistance with its rod upward.

Pay attention to the following conditions that will denote a defective shock:

- A skip or a hang back when reversing stroke at mid travel.
- Seizing or binding condition except at extreme end of either stroke.
- Oil leakage.
- A gurgling noise, after completing one full compression and extension stroke.

Renew if any faults are present.

# All Models Equipped with Gas Pressurized Shock

NOTE: Gas pressurized shocks are light gray painted.

Gas shock can be inspected as follows:

Because of gas pressure, strong resistance is felt when compressing shock. When released, the shock will extend unassisted. Renew as required.

If suspecting an internal gas leak between oil chamber and gas chamber, check shock as follows:

Install shock in a vise clamping on its bottom eyelet with its rod upward.

Let it stand for 5 minutes.

Completely push down the shock rod then release.

Rod must comes out at a steady speed. If speed suddenly increases particularly at end of extension, replace shock.

If suspecting a frozen gas shock proceed as follows:

Place shock in a freezer (temperature below 0°C (32°F)) for 4 hours.

Push down on rod and note its resistance, compare to a new shock. If shock is frozen it will be much more difficult to compress than for the new one.

### 25, Protector

At assembly, mount protector with its notch toward front.



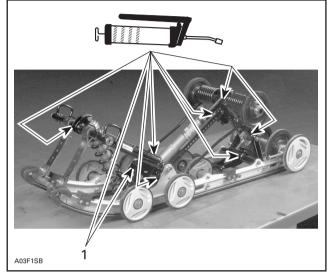
1. Notch

## INSTALLATION

Install assembled suspension into track with front portion first.

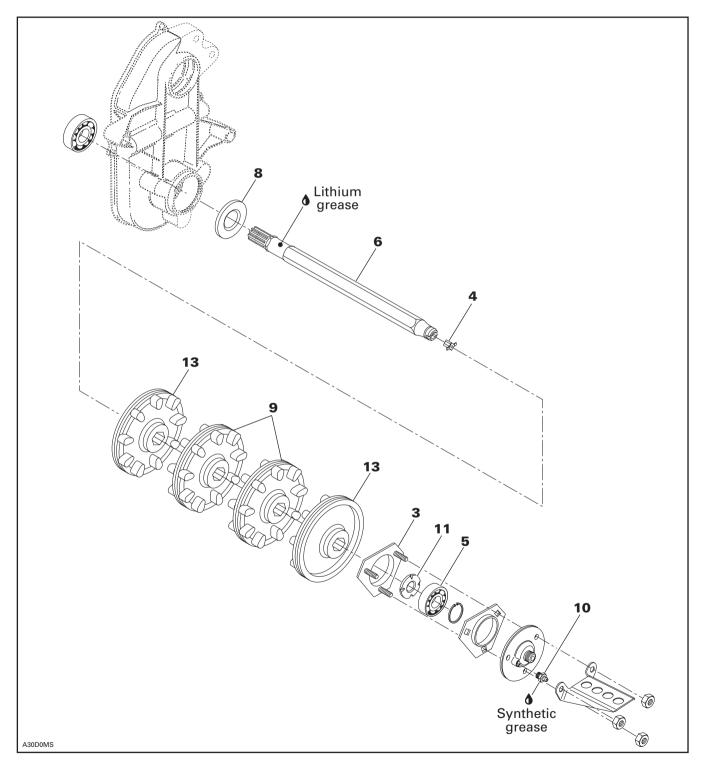
Insert rear portion of suspension into track.

Bolt front arm, rear arm then center top idler wheel axle.


Adjust track tension.

## **RIDE ADJUSTMENT**

Refer to Operator's Guide.


## LUBRICATION

Lubricate front and rear arms at grease fittings using synthetic grease (P/N 413 7115 00).



SC-10 HP: 7 GREASE FITTINGS
Only the GT 700/SE and all LT versions have this 8th grease fitting

# **DRIVE AXLE**



Subsection 03 (DRIVE AXLE)

## REMOVAL

Drain oil from chaincase. Release drive chain tension. Remove chaincase cover.

Raise and block rear of vehicle off the ground.

Remove suspension. Refer to SC-10 SUSPENSION 07-02.

## 2,8, End Bearing Housing and Seal

Remove angle drive unit and coupling cable.

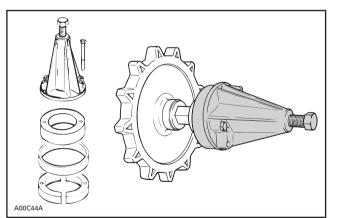
Remove chain and sprocket then circlip and bearing from drive axle.

Pry oil seals from chaincase and end bearing housing.

### 6,9,13, Drive Axle and Sprocket

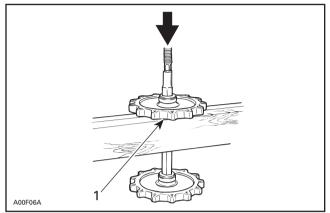
Release drive axle sprocket from track and at the same time, pulling the drive axle towards the end bearing housing side.

Remove drive axle from vehicle.


## DISASSEMBLY

### 4, Speedometer Drive Insert

Remove speedometer drive insert.


### 5,12, Bearing

To remove bearings, use puller assembly, ring and half rings as illustrated.

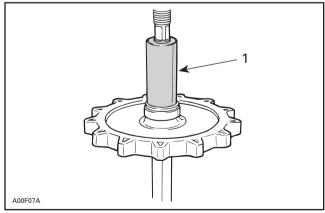


### 9,13, Sprocket and Half-Sprocket

To remove press fit sprockets, use a press and a suitable support as illustrated.



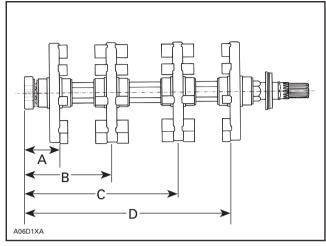
TYPICAL


1. Support sprocket near hub

**NOTE:** Two different types of sprocket press fit can be found. Ensure to replace ring reinforced sprockets with the same type.

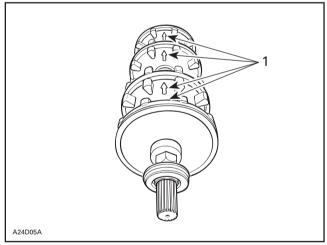
## ASSEMBLY

### 8,9,13, Drive Axle and Sprocket


To assemble press fit sprockets, use a press and a suitable pipe as illustrated. Sprockets must be assembled according to the following dimensions.



1. Pipe

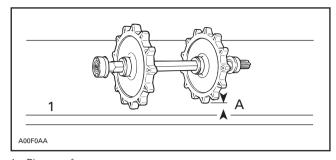

#### Section 07 REAR SUSPENSION Subsection 03 (DRIVE AXLE)

#### CK3 Series



- 48.9 mm (1-59/64 in) Α.
- 151.4 mm (5-31/32 in) 274.4 mm (10-51/64 in) В.
- C. 274.4 mm (10-51/64 in) D. 376.9 mm (14-27/32 in)

Ensure to align indexing marks of each sprocket when assembling.

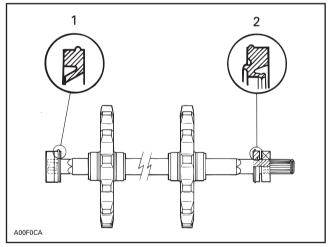



TYPICAL

1. Indexing marks aligned

The maximum desynchronization for the sprockets is 1.5 mm (1/16 in).

To check this tolerance, place axle assembly on a plane surface and measure the gap between sprocket tooth and surface.




Plane surface 1.5 mm (1/16 in) MAXIMUM 1 Α.

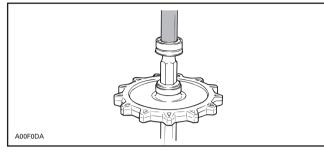


### 6,8, Drive Axle and Seal

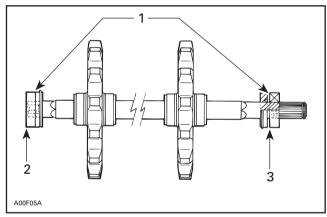
When assembling drive axle, always position a new seal on each end of drive axle (if applicable). Locate seal lip as illustrated.



- 1. Grease seal type
- 2. Oil seal type


### 11, Bearing Protector

At assembly, flat side of bearing protector must be against bearing.


Subsection 03 (DRIVE AXLE)

### 5,12, Bearing

Always push bearing by inner race.



The bearing on the splined side of axle must be pushed until it is seated on shaft shoulder. The end bearing housing bearing must be flush with end of drive axle. Each bearing must have its shield facing the sprocket.

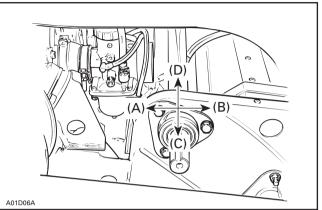


1. Bearing shield on this side

Flush with drive axle
 Seated on shaft shoulder

S. Sealed on shart shoulder

## AXIAL PLAY


Ensure there is no deformation of the sheet metal around the end bearing housing. Straighten as required.

Before attempting to adjust the drive axle axial play, check the chaincase perpendicularity as follows:

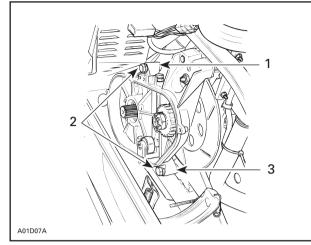
#### CHAINCASE PERPENDICULARITY ADJUSTMENT

- Remove driven pulley.
- Unbolt bearing support.
- Extract bearing from its support.

Wrong chaincase perpendicularity will make it difficult to correctly install the bearing in its support due to the countershaft and support misalignment.



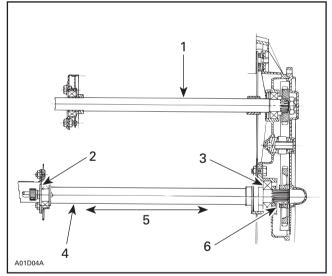
TYPICAL


 Add shim(s) (P/N 504 0398 00) between chaincase and frame to obtain easy bearing installation.

## CAUTION

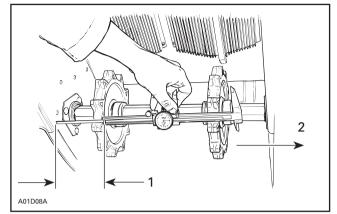
When installing one shim or more between chaincase and frame, secure with 50 mm long screws.

	BEARING POSITION			
	(A) TOWARD FRONT OF VEHICLE	(B) Toward Rear Of Vehicle	(C) TOWARD BOTTOM OF VEHICLE	(D) TOWARD TOP OF VEHICLE
SHIM LOCATION	LOWER	UPPER	UPPER	LOWER

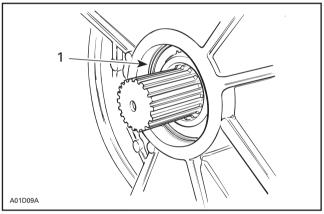

This chart can be use as a "starting point" to correct the chaincase perpendicularity.



#### **TYPICAL**


- Upper shim location
- 50 mm long screws when installing one shim or more 2
- 3. Lower shim location
- Do not reinstall the driven pulley at this time.

#### AXIAL PLAY ADJUSTMENT




#### TOP VIEW

- Countershaft 1
- Shim position on end bearing housing side Shim position on chaincase side 2
- 3. 4. Drive axle
- Axial play
- 5. 6. Shim between sprocket and spacer
- Push the drive axle toward chaincase and take note of the distance between the sprocket and tunnel.



- Distance between sprocket and tunnel
- 2 Drive axle pushed toward chaincase



1. No gap all around

- Pull drive axle toward the end bearing housing and take note of the measurement between sprocket and tunnel.

The drive axle axial play is the difference between these 2 measurements.

- Repeat this procedure 2 or 3 times to obtain an accurate measurement.

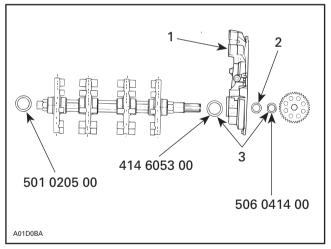
The allowable drive axle axial play is 0 to 1.5 mm (0 to .060 in).

The drive axle axial play, as calculated above, should be within the allowable axial play, add shim(s) accordingly.

- Remove drive axle, install required shim(s) as per the shim position chart, reinstall drive axle without the suspension and track.

Subsection 03 (DRIVE AXLE)

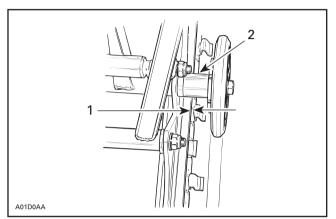
#### SHIM POSITION


Shim position is important to maintain proper sprocket alignment.

## CAUTION

Install shim(s) following the pattern shown in the chart.

SHIM(S)	SHIM POSITION AND QUANTITY		
REQUIRED	END BEARING HOUSING SIDE	CHAINCASE SIDE	
1	1		
2	1	1	
3	2	1	


When installing shims between the chaincase and the drive axle bearing, there must be same quantity of shims between the drive chain sprocket and spacer.



- 1. Chaincase
- Spacer
   Same quantity
- Double-check drive axle axial play as described above.
- Modify total shim thickness as required.
- Reinstall track and suspension. Adjust track tension and alignment.

**NOTE:** Center the track suspension to ensure that the alignment check made in the next step is accurate.

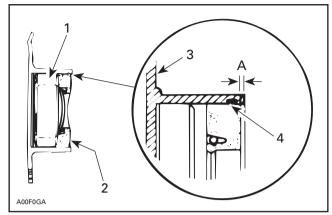
- To center, grasp the track suspension and move it sideways, left and right. Position the track suspension at the midpoint of its sideways movement.
- Check track front alignment by measuring the gap, on each side between guide cleat and the slider shoe, behind the suspension front axle as shown.



Distance between guide cleat and slider shoe
 Suspension front axle

If the difference between each side exceeds 3 mm (1/8 in), redistribute drive axle shims as follows:

DIFFERENCE BETWEEN EACH SIDE	DRIVE AXLE SHIM REDISTRIBUTION	
3 to 4.5 mm	Remove 1 shim from larger gap side.	
(1/8 to 3/16 in)	Add 1 shim on smaller gap side.	
4.5 to 6 mm	Remove 2 shims from larger gap side.	
(3/16 to 1/4 in)	Add 2 shims on smaller gap side.	


## INSTALLATION

### 4, Speedometer Drive Insert

If the drive axle to be installed is a new part and the vehicle is equipped with a speedometer, a correct size speedometer drive insert must be installed into the axle end. Ensure that insert is flush with end of axle.

Position drive axle assembly into location. Install end bearing housing. Install spacer (if applicable) between bearing and lower chaincase sprocket.

Install chaincase and position seals (if applicable), making sure that a gap of approximately 2 mm (1/16 in) exists between end of bearing housing and each seal.



#### SIDE VIEW

- 1. Bearing
- 2. Seal
- 3. Housing
- 4. Seal lip A. 2 mm (1/16 in) approx.

### 3, Retainer Ring

Make sure that welded nuts are toward inside of tunnel.

Lock drive axle sprocket with a circlip.

Reinstall the chaincase cover.

Refill with chaincase oil. Refer to TECHNICAL DATA 10.

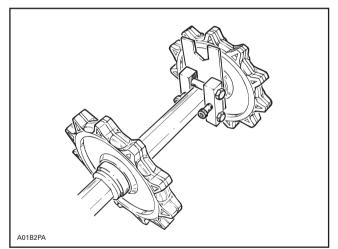
Install the suspension. Refer to TRACK 07-04 and adjust track tension and carry out track alignment procedure.

## LUBRICATION

### 15, Grease Fitting

Lubricate end housing bearing with low temperature grease (P/N 413 7061 00).

## ADJUSTMENT


Sprocket/Track Alignment



Do not temper with sprocket/track alignment if frame or suspension is damaged.

Sprockets might be repositioned to fit lugs without removing drive axle.

Use drive axle sprocket adjuster kit (P/N 861 7257 00).



TYPICAL

# TRACK

## TRACK TYPE APPLICATION

Refer to TECHNICAL DATA section 10.

## GENERAL

This section gives guidelines for track removal. Some components require more detailed disassembly procedures. In these particular cases, refer to the pertaining section in this manual.

## INSPECTION

Visually inspect track for:

- cuts and abnormal wear
- broken rods
- broken or missing track cleats

If track is damaged or rods are broken, replace track. For damaged or missing cleats, replace by new ones, using cleat remover (P/N 529 0287 00). Use small-cleat installer (P/N 529 0085 00).

## WARNING

Do not operate a snowmobile with a cut, torn or damaged track.

## REMOVAL

Remove the following parts:

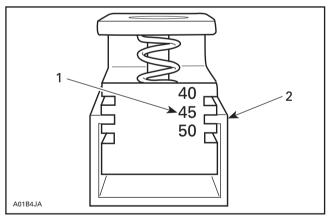
- speedometer cable
- muffler
- chaincase cover
- suspension
- drive axle seal
- end bearing housing
- sprockets and chain
- drive axle (toward end bearing housing)
- track

## INSTALLATION

Reverse the removal procedure.

**NOTE:** When installing the track, respect rotation direction indicated by an arrow on track thread.

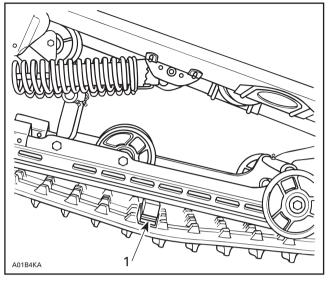
Check sprocket/track alignment as described in DRIVE AXLE 07-03.


### Track Tension and Alignment

Track tension and alignment are inter-related. Do not adjust one without checking the other. Track tension procedure must be carried out prior to track alignment.

### Tension

Lift the rear of vehicle and support with a mechanical stand. Allow the slide to extend normally. Check the gap half-way between front and rear idler wheels. Measure between slider shoe and bottom inside of track.


When using the track tension gauge (P/N 529 0215 00), slide U shape extrusion to proper deflection.



1. Example: 45 mm 2. Extrusion

Insert pre-setted gauge between slider shoe and track. Allow gauge to settle by forcing track up and down. Track tension is as specified when edge of gauge reaches line.

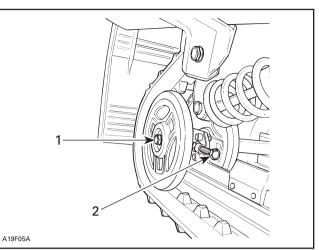
Subsection 04 (TRACK)



TYPICAL

1. Line

NOTE: Lightly oil track tension gauge center pin to avoid sticking.


#### All Models

Refer to TECHNICAL DATA 10 for proper tension values.

## **CAUTION**

Too much tension will result in power loss and excessive stress on suspension components. If too loose, the track will have a tendency to thump.

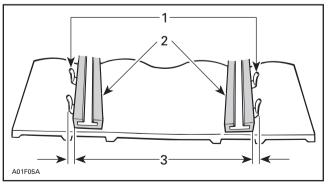
To adjust, loosen the rear idler wheel retaining screws then loosen or tighten the adjuster bolts located on the inner side of the rear idler wheels.



#### TYPICAL

- 1. Retaining screw
- 2. Adjuster bolt

#### Alignment

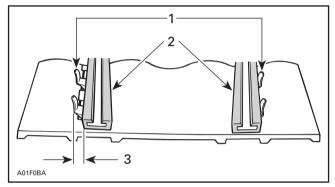

## WARNING

Before checking track tension, ensure that the track is free of all particles which could be thrown out while it is rotating. Keep hands, tools, feet and clothing clear of track. Ensure no one is standing in close proximity to the vehicle.

#### All Models

With rear of vehicle supported off the ground, start engine and allow the track to rotate **slowly**.

Check that the track is well centered: equal distance on both sides between edges of track quides and slider shoes.

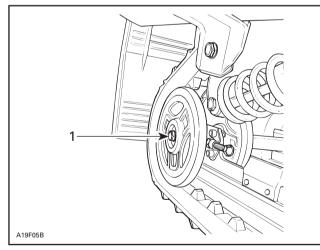



- Guides 1.
- Slider shoes
   Equal distance

## WARNING

Before checking track alignment, ensure that the track is free of all particles which could be thrown out while track is rotating. Keep hands, tools, feet and clothing clear of track.

To correct, stop engine then tighten the adjuster bolt on side where guides are farthest to slide. Recheck alignment.




Guides 1.

Slider shoes
 Tighten on this side

NOTE: Torque retaining screw to 48 Nom (35 lbf•ft) after adjustment.

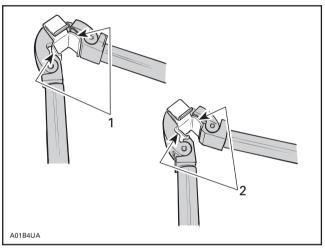
Tighten the idler wheel retaining screws.



#### **TYPICAL** 1. Retighten

Restart engine, rotate track slowly and recheck alignment.

### **Track Cleat**


#### Removal

- Raise rear of vehicle off the ground and lift snowguard then rotate track to expose a cleat to be replaced.
- Using track cleat remover (P/N 529 0087 00) for all models.

#### Installation

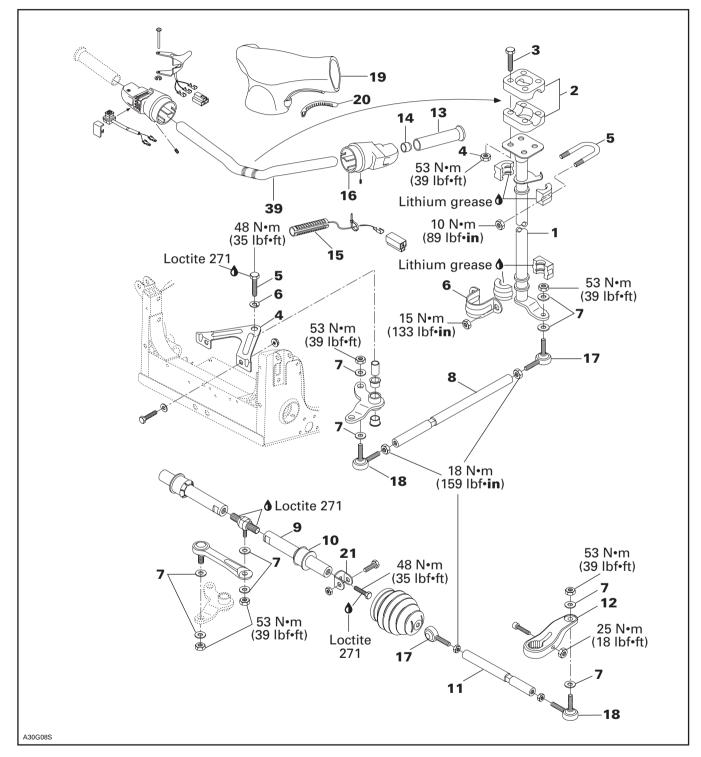
**NOTE:** Keep the same pitch between guide cleats.

- Place new cleat in position and using small track cleat installer (P/N 529 0085 00) bend cleat then push tabs into rubber.



TYPICAL

1. First step


2. Second step (to push tabs into rubber)

# **TABLE OF CONTENTS**

STEERING SYSTEM	08-02-1
DISASSEMBLY AND ASSEMBLY	08-02-2
INSPECTION	08-02-6
STEERING ADJUSTMENT (SKIS)	08-02-7
LUBRICATION	08-02-10
SUSPENSION AND SKI SYSTEM	
DISASSEMBLY	08-03-2
INSPECTION	08-03-3
INSTALLATION	08-03-3
ADJUSTMENT	08-03-4

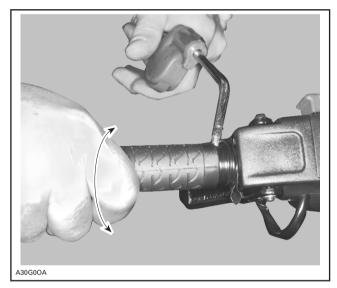
# **STEERING SYSTEM**

**CK3 Series** 



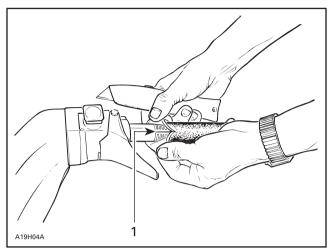
Subsection 02 (STEERING SYSTEM)

## DISASSEMBLY AND ASSEMBLY


### 13, Grip

Grips must be carefully removed to prevent damaging the heating elements.

Heat grip with a heat gun.


Apply tape to handlebar near the grip to protect paint.

Inject compressed air into the handlebar and twist grip as pulling it out.

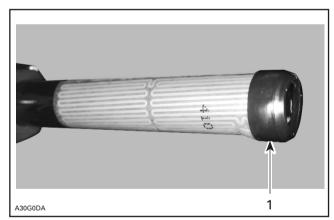


The grips might be unremovable as explained above, in this case, carefully proceed as follows to prevent damaging the heating elements.

Locate the element wires inside the handlebar; look through end of grip. Start cutting the grip exactly opposite the element wires and immediately peel it open to locate the gap in the heating element, as shown.



#### TYPICAL


1. Gap in the heating element opposite the wires

Continue cutting along the gap and remove the grip.

If required, slowly peel heating element **no. 15** from handlebar and remove it.

To install, stick the heating element to the handlebar making sure the wires do not interfere with operation of the accelerator or brake handle

Prior to install grips, position heating element protector **no. 14**.

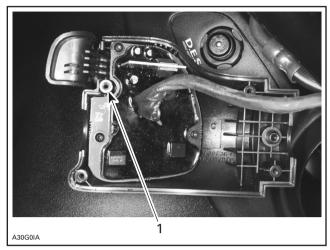


1. Heating element protector

## WARNING

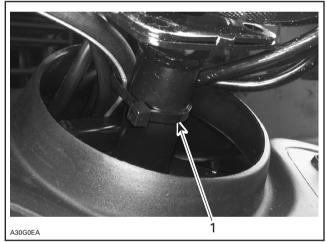
Never use lubricants (e.g. soap, only grease, etc.) to install the handlebar grip, use a mix of soap and water. Mix 40 parts of water with one part of dish washing soap (recommended: Ultra Joy, Sunlight or Palmolive). Heat the grip with a heater gun or a spot light to ease installation. Insert new grip with compressed air.




## 1, Steering Column

Remove steering pad, remove master cylinder from handlebar and put it aside. Remove circlip retaining throttle cable to throttle housing. Unplug all connector housings of handlebar switches. Remove handlebar ass'y.





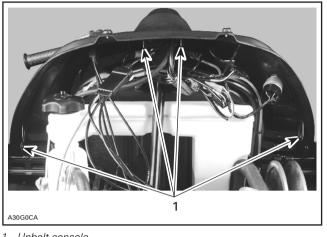

If intensity control module **no. 16** has to be removed, note that a lock washer may fall during removal. At installation, apply glue to that lock washer (P/N 224 7410 73).



1. Lock washer glued in place

Cut locking tie retaining brake line and throttle cable to steering column.

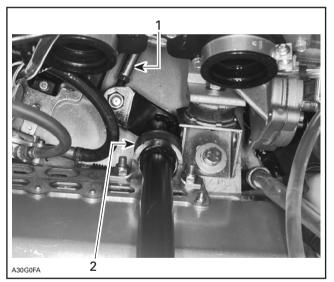



1. Cut this locking tie

Remove the air intake silencer then center and magneto side carburetors.

Unbolt console at center and sides.

#### Section 08 STEERING/FRONT SUSPENSION


Subsection 02 (STEERING SYSTEM)



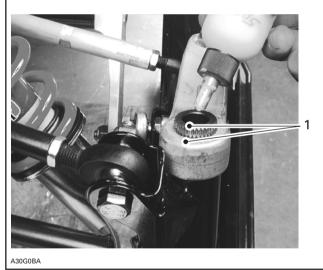
1. Unbolt console

Detach the short tie rod (under the engine) from the steering column. Note that a hardened flat washer no. 7 goes on each side of steering column lever.

Remove U-clamp no. 6.



1 Short tie rod 2. U-clamp


Remove U-bolt no. 5 from steering support then, pull steering column from top.



1. U-bolt nuts

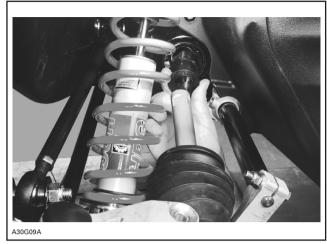
### 17, Steering Arm

To maintain correct steering geometry for reassembling, scribe mark the steering arm and skilleg before disassembly.



1. Marks

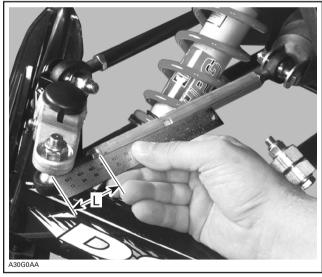
### 10, Bushing


Unscrew sliding rod no. 9.

Detach rubber boot from frame. Pull out sliding rod.

Working from engine compartment, drive out bushing no. 10.

Install a new bushing proceeding from front suspension pit.

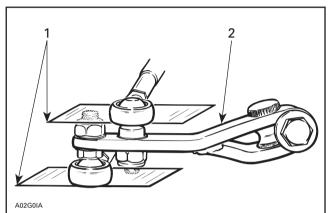

#### Section 08 STEERING/FRONT SUSPENSION Subsection 02 (STEERING SYSTEM)



**BUSHING INSTALLATION** 

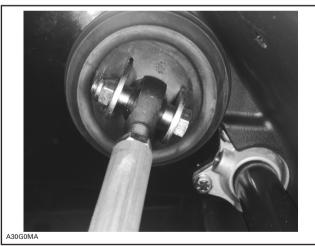
### 17,18, Ball Joint (left hand and right hand threads)

The maximum external threaded length not engaged in the tie rod must not exceed the value L in the following thread length chart:




**TYPICAL** L: Threaded length not engaged

MODEL	L	
WODEL	mm	(in)
Outer ball joint of tie rods	46	(1-13/16)
Both ball joints of short tie rod (linking steering column to pivot arm) and inner ball joint of tie rods	34	(1-11/32)


The ball joint should be restrained when tightening the tie rod end lock nut. Align it so the tie rod end is parallel to the steering arm when assembled on the vehicle, refer to the following illustration.

For proper torque specifications refer to the specific exploded view for the vehicle being serviced.



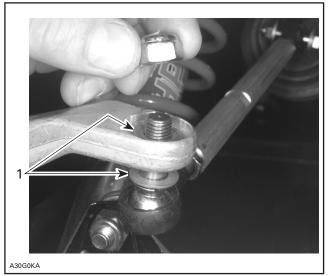
TYPICAL

- 1. Parallel with steering arm
- 2. Steering arm



TIE ROD BALL JOINT PARALLEL TO BRACKET BEFORE TIGHTENING



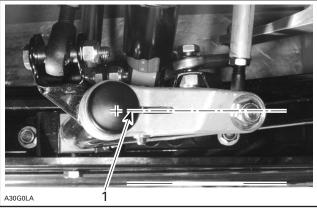

The cut off section of the ball joint must run parallel with the steering arm. When tightening lock nuts, restrain ball joint with appropriate size wrench. Ensure not too many threads are kept outside of the tie rod according to the thread length chart.

## Section 08 STEERING/FRONT SUSPENSION

Subsection 02 (STEERING SYSTEM)

### 7, Hardened Washer

Install a hardened washer on each side of the arm.




1. Hardened washers

## 12, Steering Arm

The steering arm angles should be equal on both sides when skis are parallel with vehicle.

Steering arm axis must run parallel to ski.



1. Parallel

Tighten the steering arm pinch bolt and nut to the torque specified in the exploded view.

## INSPECTION

Check skis and runner shoes for wear, replace as necessary. Refer to FRONT SUSPENSION 08-03.

### 12, Steering Arm

Make sure steering arm and ski leg splines interlock.

## WARNING

Any parts having worn splines have to be replaces with new ones.

Check the general condition of the steering system components for wear. Replace if necessary.

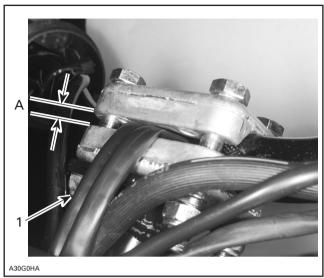
### 15, Heating Grip Element

Refer to TESTING PROCEDURE 06-06.

### 17,18, Ball Joint (left hand and right hand threads)

Inspect ball joint ends for wear or looseness, if excessive, replace them.

## ADJUSTABLE HANDLEBAR


Loosen all 4 nuts **no. 4** retaining steering clamps **no. 2**.

Adjust the steering handlebar to the desired position.

Lock the handlebar in place by tightening the 4 nuts as specified in the illustrations.

## CAUTION

Tighten the nuts equally in a criss-cross sequence and ensure there is an equal gap on each side of the clamps.



#### TYPICAL

1. Torque to 23 N•m (17 lbf•ft) A. Equal gap all around

## WARNING

Avoid contact between the brake handle and the windshield by NOT adjusting the handlebar too high.

## WARNING

Make sure that the steering pad and all controls are properly fixed to their normal location on the handlebar.

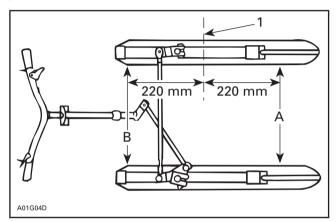
#### 19,20, Steering Pad and Rubber Attachment

## CAUTION

Prior to installation, perform handlebar adjustment.

Properly fit the steering pad to the handlebar. Assemble using the 2 rubber attachments.

## WARNING


Make sure that the steering pad and all controls are properly fixed to their normal location on the handlebar.

## STEERING ADJUSTMENT (SKIS)

### Definitions

#### TOE-OUT:

A difference measured between the front edge of the skis "A" and rear edge "B" as viewed from the top. It is adjustable. For all CK3 models, toeout is measured at 220 mm (8-21/32 in) from ski pivot bolt axis.



TYPICAL

#### CAMBER:

A specific inward or outward tilt angle of ski leg compared to a vertical line when viewing the vehicle from front.

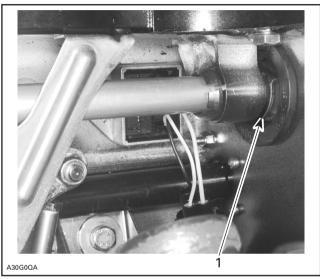
### Adjustments

Adjustments should be performed following this sequence:

- Pivot arm centering.
- Set camber angle.
- Check for a horizontal handlebar.
- Set toe-out.

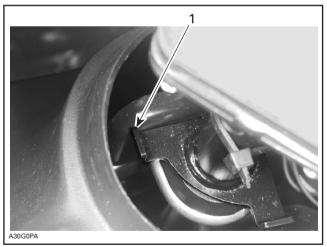
#### **PIVOT ARM CENTERING**




Do not attempt to adjust straight ahead ski position by turning the ball joint on tie rod **no. 8**.

^{1.} Ski pivot bolt axis

# 8,17,18,21, Tie Rod, Ball Joint and Bracket

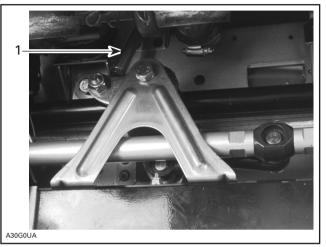

Remove steering pad.

Turn handlebar all the way to the right. Check that the right side bracket **no. 21** is against the bushing **no. 10.** 



1. Bracket against the bushing

Keeping the handlebar in that position, check that the stopper on the steering column is almost touching the plate.

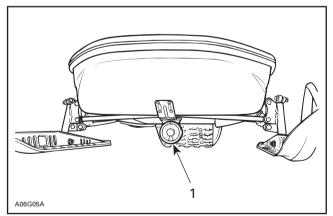



1. Stopper almost touching the plate

Loosen the jam nuts on tie rod **no. 8** (LH threads on steering column end) and turn tie rod accordingly. Align and retighten the jam nuts to 18 N•m (159 lbf•**in**).

## WARNING

Never lengthen this tie rod so that threaded portion of ball joint exceeds 34 mm (1-11/32 in).



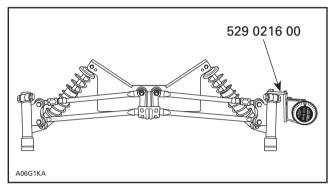

1. Tie rod **no. 8** 

### CAMBER

**NOTE:** Identical adjustments are required on both sides of the vehicle.

- Make sure the vehicle is leveled by placing an angle finder under the main frame member as shown on the following illustration.
- Vehicle skis must be off the ground.




TYPICAL

1. Angle finder

Using special tool (P/N 529 0216 00) mounted to the ski leg, position the angle finder on the tool as shown in the following illustration. An alternate location for the angle finder if the special tool is not available is the outside of the ski leg housing.

## CAUTION

Angle finder must sit square against swing arm. Positioning angle finder against weld bead or decal may result in false reading.

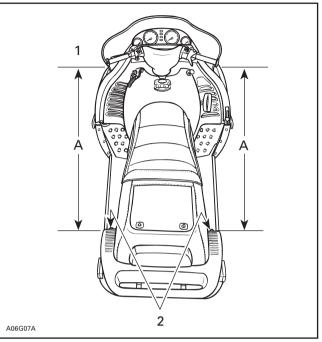


TYPICAL — CAMBER ADJUSTMENT SET-UP

#### Adjusting

- Loosen lock nut on both upper control arms.
- Unbolt both upper control arms at ski leg housing. Turn tie rod half turn at a time to obtain the specified value when skis are not touching ground. Bolt upper control arms.

MODEL	CAMBER ± 0.5°
Formula III 600 LT/700 GT 700/SE Mach Z LT	- 4.5
Formula III 600 Mach 1/Z	- 2.5


**NOTE:** Because of a negative camber, skis will lean toward center of vehicle.

Tighten lock nut on both upper control arms.

#### HANDLEBAR AND SKI TOE-OUT

Check that handlebar is horizontal when skis are in straight ahead position by measuring from the extremities of the grips to the rearmost edge of the tunnel, as shown.

**NOTE:** The reference point must be the same relative to each side.



TYPICAL

1. Equal distance A on each side

2. Same reference point

Adjustment is performed by adjusting length of left and right tie rods **no. 11**.

## WARNING

Do not attempt to adjust skis straight ahead position by turning ball joint on tie rod **no. 8**.

#### Procedure:

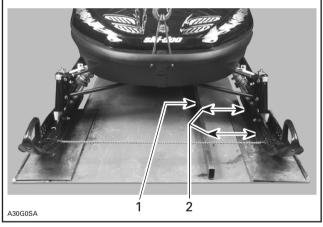
- Loosen jam nuts of both tie rods no. 11.
- Turn the tie rod on one side to shorten its length.
- Lengthen the other one by turning it exactly the same amount, so that toe-out is not changed.

## WARNING

Never lengthen tie rod so that threaded portion of inner ball joint exceeds 34 mm (1-11/32 in) and 46 mm (1-13/16 in) for outer ball joint.

 Close front of skis manually to take all slack from steering mechanism.

**NOTE:** A rubber cord must be hooked in front of skis to keep them closed.


#### Section 08 STEERING/FRONT SUSPENSION Subsection 02 (STEERING SYSTEM)

Toe-out must be as specified when skis are in a straight-ahead position and the front of vehicle is lifted off the ground.

MODEL	TOTAL TOE-OUT + 3 mm (+ 1/8 in) - 0 mm (- 0 in)
Formula III 600 LT/700 GT 700/SE Mach Z LT	12 (1/2)
Formula III 600 Mach 1/Z	16 (5/8)

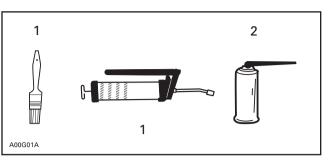
NOTE: To make sure skis are in a straight-ahead position, place a straight edge against pre-adjusted track and measure the distance between front and rear of skis and straight edge.

To reduce tolerance when measuring, set one ski to proper toe-out (half the total toe-out) then measure from that ski to the opposite ski.



- Straight edge Measure at 220 mm (8-21/32 in) from ski pivot axis

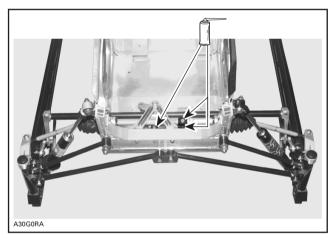
## LUBRICATION

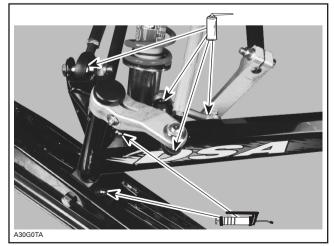

## WARNING

Do not lubricate throttle cable or housing.

## 26, Grease Fittings

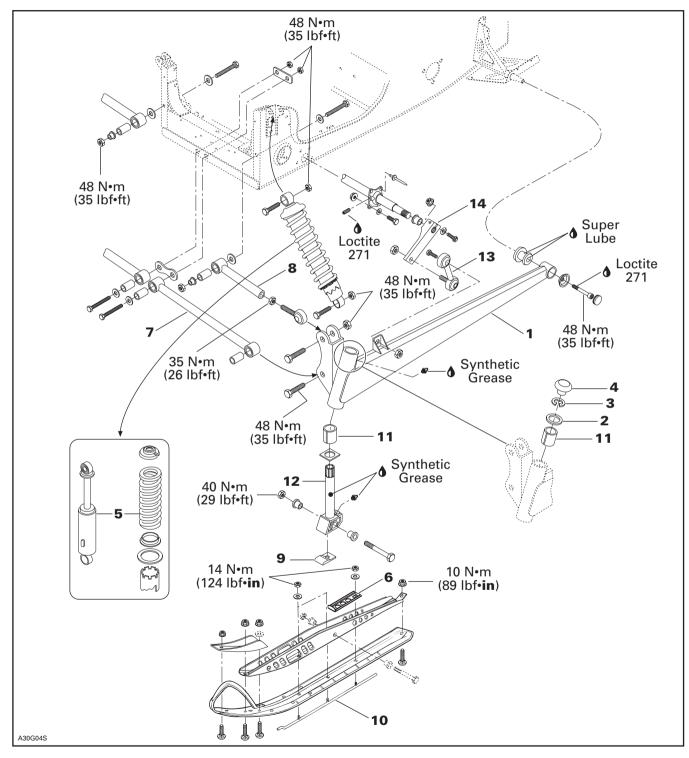
Only use synthetic grease (P/N 413 7115 00).


The following symbols will be used to show what type of lubricant should be used at the suitable locations.




1. Synthetic grease (P/N 413 7115 00) 2. BOMBARDIER LUBE (P/N 293 6000 16)

#### Lubricate:


- Steering column bushings.
- Short tie rod ends.
- Ball stud lever.
- Upper arm ball joint.
- Grease ski legs and ski pivots.
- Stabilizer ball joints.

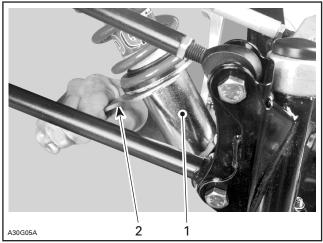




# **SUSPENSION AND SKI SYSTEM**

**CK3 Series** 




Subsection 03 (SUSPENSION AND SKI SYSTEM)

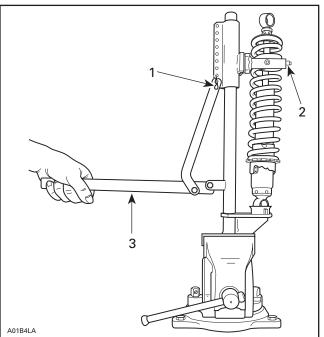
## DISASSEMBLY

### 5, Shock

Lift front of vehicle and support it off the ground.

Reduce spring preload by turning adjusting ring accordingly with the adjustment wrench in vehicle tool box.




**TYPICAL** 

- 1. Shock cam
- 2. Adjustment wrench

Remove lower bolt then upper bolt of shock.

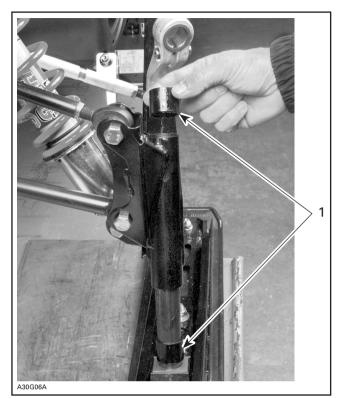
For shock spring disassembly use shock spring remover (P/N 529 0271 00) in a vise. Mount shock in it and turn shock so that spring coils matched spring compressor.

Close and lock the bar. Adjust the handle horizontal position by changing the position of the clevis pin.



1. Clevis pin

Bar
 Handle horizontal


Push down on the handle until it locks. Remove spring stopper then release handle.

### 1, Swing Arm

Lift front of vehicle and support it off the ground.

Remove cap no. 4, circlip no. 3 then loosen steering arm bolt and pull up steering arm. Note shim no. 2 positions. Ski leg may fall off from swing arm.

Remove bushings no. 11.



1. Bushings no. 11

Unbolt lower end of shock from swing arm. Unbolt radius rod.

## 14, Lever

Unbolt tie rod **no. 13** ball joint from swing arm. Unbolt rear of swing arm from frame. Pull swing arm off the vehicle.

## INSPECTION

Check all rubber cushions for crack and wear. Replace as required.

Check straightness of ski leg **no. 12** and make sure that splines are properly interlocking with steering arm. Replace as required.

Check for straightness of swing arm. Replace as required.

Check for clogged grease fittings. Clean or replace as required.

Check skis and runners  $\ensuremath{\text{no. 10}}$  for wear, replace as necessary.

Check condition of ski stopper **no. 9**. Replace it when deteriorated.

To check condition of shock, refer to SC-10 SUS-PENSION 07-02 then look for **Shock Absorber Inspection**.

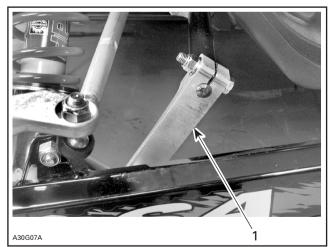
## INSTALLATION

For assembly, reverse the disassembly procedure. However, pay attention to the following.

Apply synthetic grease (P/N 413 7115 00) to ski leg components.

Tighten nuts and screws to proper torque as mentioned in exploded view.

## 7,8, Upper and Lower Half Arms


Position half arms and tie rods horizontally before tightening nuts.

## 8, Adjustable Half Arm

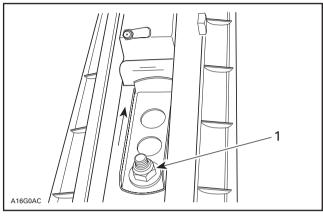
Refer to STEERING SYSTEM 08-02 for proper camber adjustment using these half arms.

## 13,14, Tie Rod and Lever

Install levers pointing downward on both sides at same angle, see following photo.



1. Lever pointing downward


### Section 08 STEERING/FRONT SUSPENSION

Subsection 03 (SUSPENSION AND SKI SYSTEM)

### ADJUSTMENT

### 6, Stopper

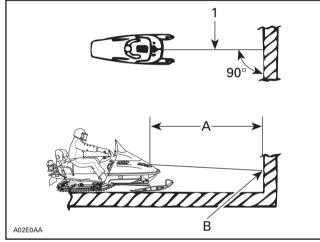
Adjust stopper against ski stopper to reduce darting (unwanted vehicle side-to-side movement).



 Loosen nut, adjust stopper against ski stopper then retighten nut to 14 N•m (124 lbf•in)

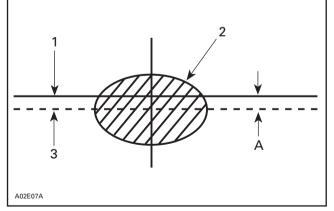
### **TABLE OF CONTENTS**

BODY	09-02-1
INSTALLATION AND ADJUSTMENT	09-02-1
HEADLAMP BEAM AIMING	09-02-1
BULB REPLACEMENT	09-02-1
DECAL	09-02-2
WINDSHIELD INSTALLATION	09-02-2
HOOD	09-02-2
HALF BOTTOM PAN	09-02-3
BELT GUARD	09-02-4
WIRING HARNESS	09-02-4
CABLES	09-02-4
PIPING	09-02-4
PLASTIC MAINTENANCE	09-02-5
MAINTENANCE	09-02-5
FRAME	09-03-1
FRAME CLEANING	09-03-1
FRAME WELDING	09-03-1
FRAME COMPONENT REPLACEMENT	09-03-1


### BODY

### INSTALLATION AND ADJUSTMENT

### HEADLAMP BEAM AIMING


Beam aiming is correct when center of high beam is 25 mm (1 in) below the headlamp horizontal center line, scribed on a test surface, 381 cm (12 ft 6 in) away.

Measure headlamp center distance from ground. Scribe a line at this height on test surface (wall or screen). Light beam center should be 25 mm (1 in) below scribed line.



### TYPICAL

- 1. Headlamp center line A. 381 cm (12 ft 6 in) B. 25 mm (1 in) below center line

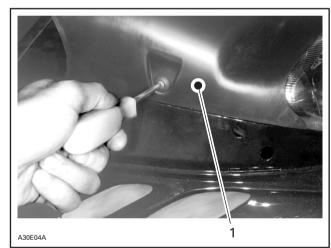


Headlamp horizontal

Light beam (high beam) (projected on the wall)

З. Light beam center

### **Required Conditions**

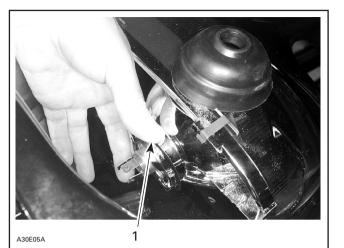

Place the vehicle on a flat surface perpendicular to test surface (wall or screen) and 381 cm (12 ft 6 in) away from it.

Rider or equivalent weight must be on the vehicle. Select high beam.

### **BULB REPLACEMENT**

### Headlamp

If any headlight bulb is burnt, remove windshield, air filter then, air deflector.




1. Air deflector

Unplug burnt bulb connector. Remove the rubber boot.

Unfasten bulb retainer ring. Detach the bulb and replace. Properly reinstall parts including air filter.

A. 25 mm (1 in)



1. Locking ring

### CAUTION

Never touch glass portion of an halogen bulb with bare fingers, as it shortens its operating life. If by mistake glass is touched, clean it with isopropyl alcohol which will not leave a film on the bulb.

### Taillight

If the taillight bulb is burnt, expose the bulb by removing red plastic lens. To remove, unscrew the 2 retaining screws. Verify all lights after replacement.

### DECAL

To remove a decal; heat old decal with a heat gun and peel off slowly.

Using isopropyl alcohol, clean the surface and dry thoroughly.

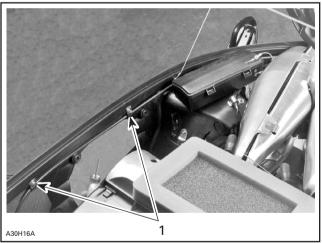
Apply liquid soap to new decal and carefully position the decal. Using a sponge or a squeegee, remove the air bubbles and surplus water working from the center toward the edges. Allow to air dry.

### CAUTION

Do not apply isopropyl alcohol or solvent directly on decals.

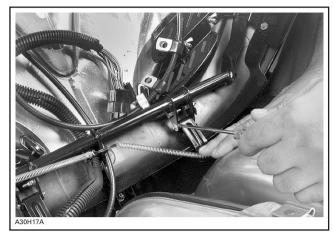
### WINDSHIELD INSTALLATION

When peeling off the protective film some polyethylene particles may remain on the windshield. A soft clean cloth moistened with naphtha (camping equipment fuel) will easily remove the remaining particles.


### WARNING

Naphtha is flammable and explosive under certain conditions. Always manipulate in a well ventilated area. Do not smoke or allow open flames or sparks in the vicinity.

Position the windshield on the hood then push it down until the tabs are fully inserted into the hood slots. Lock the windshield tabs in position.


### HOOD

Unfasten speedometer cable from angle drive. Remove clips holding speedometer cable to bottom pan.

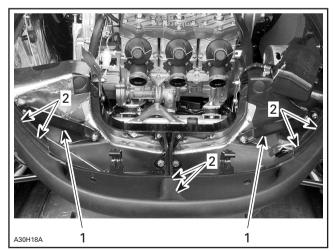


1. Clips

Remove hinge pin push nuts.



Unplug wiring harnesses then retaining cables. Remove hinge pins and hood.


### HALF BOTTOM PAN

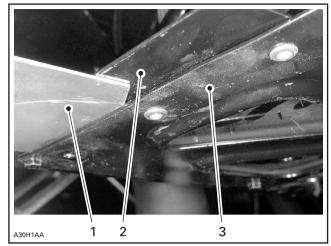
Remove hood.

Remove tuned pipes and tail pipes. Remove muffler when RH side half bottom pan has to be removed.

Unbolt suspension tower bracket on appropriate side.

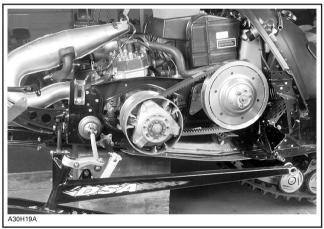
Remove 4 screws, 1 nut and 1 rivet retaining front bumper.




Suspension tower bracket

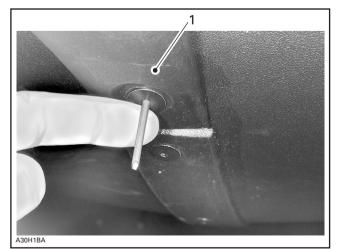
2. Bottom pan screws, nut and rivet

Unfasten swing arm at rear pivot.


Drill all rivets retaining half bottom pan to be removed.

At installation, insert bottom pan protector between tunnel and footrest.




Bottom pan protector 2. 3. Footrest

Tunnel



VEHICLE READY TO RECEIVE LH SIDE HALF BOTTOM PAN

When riveting bottom pan, do not install front rivet. That rivet is installed with the bumper.



FRONT - SEEN FROM UNDERNEATH 1. Bumper

Subsection 02 (BODY)

### **BELT GUARD**

### **Disassembly and Assembly**

**NOTE:** For additional information (ex.: exploded view) refer to the correspondent parts catalog.

### WARNING

Engine should be running only with belt guard and/or pulley guard well secured in place.

### Inspection

Check belt guard and/or pulley guard mounting bosses, clips and retainers for wear.

### WIRING HARNESS

### WARNING

Ensure all terminals are properly crimped on the wires and that all connector housings are properly fastened. Keep wires away from any rotating, moving, heating and vibrating parts. Use proper fastening devices as required.

### CABLES

### WARNING

Before installation, ensure that all cables are in perfect condition. Properly install the cable ends and secure them in place. Pay attention to route them properly, away from any rotating, moving, heating, or vibrating parts.

### PIPING

### WARNING

Always ensure that the fuel, vent, primer, impulse, injection oil and rotary valve oil lines are properly fixed to their connectors, that they are not perforated or kinked and that they are properly routed away from any rotating, moving, heating or vibrating parts. Also check for leaks. Replace if required.

**NOTE:** Refer to proper *Parts Catalog* to find suitable clip part numbers.

### PLASTIC MAINTENANCE

### MAINTENANCE

Clean the vehicle thoroughly, removing all dirt and grease accumulation.

To clean use a soft clean cloth and either soapy water or isopropyl alcohol.

To remove grease, oil or glue use isopropyl alcohol.

### CAUTION

Do not apply isopropyl alcohol or acetone directly on decals.

### CAUTION

The following products must not be used to clean or wax any of the plastic components used on the vehicles:

- gasoline
- brake fluid
- kerosene
- diesel fuel
- lighter fluid
- varsol
- naphtha
- acetone
- strong detergents
- abrasive cleaners
- waxes containing an abrasive or a cleaning agent in their formula

### CAUTION

Clean R.I.M. Metton[®] with isopropyl alcohol only. Never use cleaners or products containing chlorine.

Apply wax on glossy finish only. Protect the vehicle with a cover to prevent dust accumulation during storage.

### **CAUTION**

If for some reason the snowmobile has to be stored outside it is preferable to cover it with an opaque tarpaulin. This will prevent the sun rays from affecting the plastic components and the vehicle finish.

### FRAME

### FRAME CLEANING

**NOTE:** For aluminum frames use only aluminum cleaner and follow instructions on container. (Dursol cleaner or equivalent).

Clean frame and tunnel with appropriate cleaners and rinse with high pressure hose.

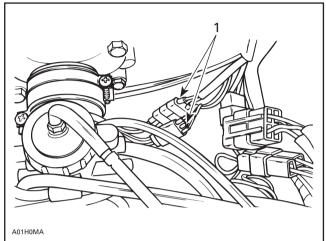
Touch up all metal spots where paint has been scratched off. Spray all bare metal parts of vehicle with metal protector.

### Seat Cleaning

For all models, it is recommend to clean the seat with a solution of **warm soapy water**, using a soft clean cloth.



Avoid use of harsh detergents such as strong soaps, degreasing solvents, abrasive cleaners, paint thinners, etc. that may cause damage to the seat cover.


### FRAME WELDING

Aluminum Frame (refer to specialized welding shop)

- argon-oxygen/acetylene welding
- rod: ER-4043 (3/32 in)

### CAUTION

Before performing electrical welding anywhere on the vehicle, unplug the multiple connector at the electronic box. On models equipped with a battery, also unplug the negative cable. This will protect the electronic box and battery against damage caused by flowing current when welding.



TYPICAL

1. Unplug before electrical welding



If welding is to be done near plastic material, it is recommended to either remove the part from the area or to protect it with aluminum foil to prevent damage.

### FRAME COMPONENT REPLACEMENT

### **Drilling Procedure**

When drilling self-piercing rivets, use Supertanium[™] drill bit (P/N 529 0318 00), available in a 5 mm (3/16 in) size and shipped in packs of 2.

For proper drilling instructions and to prevent premature wear, follow the procedure below.

Always use a variable speed electric drill.

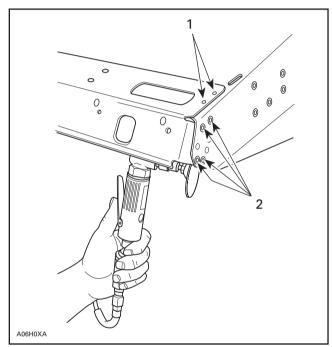
It is not necessary to center punch the rivet head, simply center the drill bit on the rivet and drill.

Maintain a slow to medium speed at all times when drilling. The proper speed is attained when a constant chip is ejected.

NOTE: To increase bit life, use Bombardier synthetic chaincase oil (P/N 413 8033 00) as a cutting oil.

### Section 09 BODY/FRAME

Subsection 03 (FRAME)


### **CAUTION**

High speed drilling will cause excessive heat which may destroy the cutting edge of the bit, therefore avoid using pneumatic drills.

### **Grinding Procedure**

### Rear Cap

Grind rivet heads from top of rear cap and underneath for side retaining rivets.



Rivets heads ground
 Rivets to be ground from underneath

To remove rivet, strike with a punch from rivet head side.

Make a chamfer from underneath on all 4 corner holes.

### **TECHNICAL DATA**

### **SI* METRIC INFORMATION GUIDE**

		BASE UNITS	
DESCRIPTION		UNIT	SYMBOL
length			
		9	
1		<b>—</b> · · ·	_
-			
		PREFIXES	
PREFIX	SYMBOL	MEANING	VALUE
kilo	k	one thousand	
centi			
milli	m		
micro	μ	one millionth	
	C	<b>DNVERSION FACTORS</b>	
TO CONVERT		TO †	MULTIPLY BY
in		mm	
in ²		cm ²	
in ³		cm ³	
OZ		g	
lb		kg	0.45
lbf		N	
. ' .			
0			
Ceisius	·····		$( C \times 1.0) + 32$

* The international system of units abbreviates SI in all languages.

[†] To obtain the inverse sequence, divide by the given factor. To convert **mm** to **in**, divide by 25.4. **NOTE:** Conversion factors are rounded off to 2 decimals for easier use.

Subsection 02 (ENGINES)

BOMBARDIER	VEHIC	LE MODEL			
	ENGIN	IE TYPE			
	Numb	er of Cylinders			
	Bore	,			
	Stroke	ł			
	Displa	cement			
	Comp	ession Ratio (corrected)			
		num Power Engine Speed ①			
		Ring Type			
0			New		
$\mathcal{T}$	King E	nd Gap	Wear Limit		
	Ring/P	iston Groove Clearance	New Wear Limit		
Ű	Piston	/Cylinder Wall Clearance	New Wear Limit		
	Conne	cting Rod Big End Axial Play	New Wear Limit		
		num Crankshaft End-play @			
	Maxin	num Crankshaft Deflection at Cen	ter		
	Rotary	Valve Timing and P/N 420 924 XX	X		
	Magn	eto Generator Output			
	Ignitio	n Type			
	Spark Plug Make and Type				
	Spark Plug Gap				
	Ignition Timing BTDC ③				
47	Trigger Coil ④				
	Gener	ating Coil ④	Low Speed		
	High Spe				
	Lighting Coil ④				
	High T	ension Coil @	Primary		
			Secondary		
	Carbu	retor Type			
	Main .	Jet			
	Needl	e Jet			
	Pilot J	et			
<u> </u>		e Identification			
		o position Cut-away			
╺┱╤╤┲┙┚		Adjustment			
$\mathbf{\nabla}$		rew Adjustment			
-	Idle S				
		/pe/Pump Octane Number			
	_	il Ratio			
	Туре		Doflection		
E	Axial I	an Belt Adjustment	Deflection		
~~~	There	ootot Oponing Temperature	Force		
~~~~		ostat Opening Temperature			
	кадіа	or Cap Opening Pressure			
		Drive Pulley Retaining Screw			
		Exhaust Manifold Nuts or Bolts			
	∃≆	Magneto Ring Nut			
( [©] ) ک	INE CO m (Ib∙f	Crankcase Nuts or Screws			
$\langle \rangle$	P.S.	Crankcase/Engine Support Nuts	s or Screws		
		Cylinder Head Nuts			

MBARDIER	VEHICLE MODEL			GRAND TOURING 700	GRAND TOURING SE	FORMULA III 600/600 R/600 LT	FORMULA III 700/700 R
	ENGINE TYPE			699	699	599	699
	Number of Cylinders			3	3	3	3
	Bore		mm (in)	69.75 (2.746)	69.75 (2.746)	64.5 (2.5394)	69.75 (2.746)
	Stroke		mm (in)	61.0 (2.402)	61.0 (2.402)	61.0 (2.402)	61.0 (2.402)
	Displacement		cm³ (in³)	699.25 (42.67)	699.25 (42.67)	597.94 (36.49)	699.25 (42.67)
	Compression Ratio (corrected)			6.8	6.8	6.8	6.8
	Maximum Power Engine Speed ①		± 100 RPM	7900	8500	8500	7900
	Piston Ring Type		1 st /2 nd	ST/R	ST/R	ST/R	ST/R
$\hat{\mathcal{T}}$	Ring End Gap	New Wear Limit	mm (in) mm (in)	0.2 (.008) 1.0 (.039)	0.2 (.008) 1.0 (.039)	0.2 (.008) 1.0 (.039)	0.2 (.008) 1.0 (.039)
$\langle \cdot \rangle$	Ring/Piston Groove Clearance	New Wear Limit	mm (in) mm (in)	0.03 (.0012) 0.2 (.0079)	0.03 (.0012) 0.2 (.0079)	0.03 (.0012) 0.2 (.0079)	0.03 (.0012) 0.2 (.0079)
J	Piston/Cylinder Wall Clearance	New Wear Limit	mm (in) mm (in)	0.10 (.0039) 0.15 (.0059)	0.10 (.0039) 0.15 (.0059)	0.07 (.0028) 0.15 (.0059)	0.10 (.0039) 0.15 (.0059)
	Connecting Rod Big End Axial Play	New Wear Limit	mm (in) mm (in)	0.39 (.0154) 1.2 (.0472)	0.39 (.0154) 1.2 (.0472)	0.39 (.0154) 1.2 (.0472)	0.39 (.0154) 1.2 (.0472)
	Maximum Crankshaft End-play @		mm (in)	0.3 (.012)	0.3 (.012)	0.3 (.012)	0.3 (.012)
	Maximum Crankshaft Deflection at C	Center	mm (in)	0.08 (.0031)	0.08 (.0031)	0.08 (.0031)	0.08 (.0031)
	Rotary Valve Timing and P/N 420 924	XXX	Opening Closing	N.A.	N.A.	N.A.	N.A.
	Magneto Generator Output		W	360	360	290	290
	Ignition Type			CDI	CDI	CDI	CDI
	Spark Plug Make and Type		<i>(</i> , )	NGK BR9ES	NGK BR9ES	NGK BR9ES	NGK BR9ES
	Spark Plug Gap		mm (in)	0.45 (.018)	0.45 (.018)	0.45 (.018)	0.45 (.018)
	Ignition Timing BTDC ③		mm (in)	2.18 (.086)	2.18 (.086)	2.18 (.086)	2.18 (.086)
7/	Trigger Coil ④	Low Speed	Ω Ω	190 - 300 49 - 75	190 - 300 49 - 75	190 – 300 49 – 75	190 – 300 49 – 75
	Generating Coil ④	High Speed	Ω	2.8 - 4.3	<u>49 - 75</u> 2.8 - 4.3	<u>49 - 75</u> 2.8 - 4.3	<u>49 - 75</u> 2.8 - 4.3
,	Lighting Coil ④	High Speed	<u>Ω</u> Ω	0.20 - 0.35	0.20 – 0.35	2.8 – 4.3 0.20 – 0.35	2.8 – 4.3 0.20 – 0.35
		Primary	Ω	0.2 - 0.5	0.20 - 0.55	0.20 - 0.55	0.2 - 0.5
	High Tension Coil ④	Secondary	kΩ	6 - 13	6 - 13	6 - 13	6 – 13
	Carburetor Type	occondury	PT0/CTR/MAG	VM 38 396/397/396	3 x VM 390	3 x VM 36 184	VM 38 396/397/396
	Main Jet		PTO/CTR/MAG	310/300/310	300	290	310/300/310
	Needle Jet			480-P1	480-P9	286 P-0	480-P1
	Pilot Jet			50	50	50	50
	Needle Identification — clip position			6DEH5-3	6DEY2-4	6DEY4-3	6DEH5-3
	Slide Cut-away			2.5	2.5	2.5	2.5
	Float Adjustment		± 1 mm (± .040 in)	18.1 (.71)	18.1 (.71)	18.1 (.71)	18.1 (.71)
ŭ	Air Screw Adjustment		± 1/16 Turn	2.5	2	2	2.5
	Idle Speed		± 200 RPM	1800	1800	1800	1800
	Gas Type/Pump Octane Number			Super Unleaded/91	Super Unleaded/91	Super Unleaded/91	Super Unleaded/91
	Gas/Oil Ratio			Injection	Injection	Injection	Injection
	Туре			Liquid	Liquid	Liquid	Liquid
	Axial Fan Belt Adjustment	Deflection Force	mm (in)	N.A.	N.A.	N.A.	N.A.
			kg (lbf)	N.A.	N.A.	N.A.	N.A.
$\sim\sim$	Thermostat Opening Temperature		°C (°F)	42 (108)	42 (108)	42 (108	42 (108)
	Radiator Cap Opening Pressure kPa (PSI)			90 (13)	90 (13)	90 (13)	90 (13)
	Drive Pulley Retaining Screw Exhaust Manifold Nuts or Bolts			5 10 (7)	5 10 (7)	5 10 (7)	(5) 10 (7)
	Magneto Ring Nut Crankcase Nuts or Screws M6 M8			10 (7) 125 (92)	10 (7) 125 (92)	10 (7) 125 (92)	10 (7) 125 (92)
				125 (92)	125 (92)	125 (92)	125 (92)
<b>()</b>				29 (21)	29 (21)	29 (21)	29 (21)
	Crankcase/Engine Support N	iuts or Screws		35 (26)	35 (26)	35 (26)	35 (26)
	Oyimaci ricad Nata	0		29 (21)	29 (21)	29 (21)	29 (21)
	Crankcase/Cylinder Nuts or	SCIEWS		29 (21)	29 (21)	29 (21)	29 (21)
	Axial Fan Shaft Nut			N.A.	N.A.	N.A.	N.A.

Subsection 02 (ENGINES)

BOMBARDIER	VEHIC	LE MODEL			MACH 1/1 R	MACH Z/Z R/Z LT/Z LT R
	ENGI	NE TYPE	699	809		
	Numb	er of Cylinders	3	3		
	Bore			mm (in)	69.75 (2.746)	70.50 (2.776)
	Stroke		61.0 (2.402)	68.0 (2.677)		
	Displa	cement		cm³ (in³)	699.25 (42.67)	796.3 (48.59)
	Comp	ression Ratio (corrected)			6.8	6.8
	Maxin	num Power Engine Speed 🛈		± 100 RPM	8300	8300
	Pistor	Ring Type	ST/R	ST/R		
$\hat{\mathcal{T}}$	Ring E	nd Gap	New Wear Limit	mm (in) mm (in)	0.2 (.008) 1.0 (.039)	0.2 (.010) 1.0 (.039)
	Ring/F	Piston Groove Clearance	New Wear Limit	mm (in) mm (in)	0.03 (.0012) 0.2 (.0079)	0.03 (.0012) 0.2 (.0079)
	Pistor	/Cylinder Wall Clearance	New Wear Limit	mm (in) mm (in)	0.10 (.0039) 0.15 (.0059)	0.11 (.0043) 0.15 (.0059)
		ecting Rod Big End Axial Play	New Wear limit	mm (in) mm (in)	0.39 (.0154) 1.2 (.0472)	0.31 (.0122) 1.2 (.0472)
		num Crankshaft End-play ②		mm (in)	0.3 (.012)	0.3 (.012)
	Maxir	num Crankshaft Deflection at Cer	nter	mm (in)	0.08 (.0031)	0.08 (.0031)
		/ Valve Timing ③ and P/N 420 924	XXX	Opening Closing	N.A.	N.A.
	Magn	eto Generator Output		W	290	290
	-	n Type			CDI	CDI
		Plug Make and Type			NGK BR9ES	NGK BR10ES
		Plug Gap		mm (in)	0.45 (.018)	0.45 (.018)
	Ū	n Timing BTDC ④		mm (in)	2.18 (.086)	2.11 (.083)
	Trigge	er Coil 🖻	T	Ω	190 – 300	190 – 300
	Gener	ating Coil 5	Low Speed	Ω	49 – 75	49 - 75
/		• " •	High Speed	Ω	2.8 - 4.3	2.8 - 4.3
	Lightii	ng Coil 🖲	During and	Ω	0.20 - 0.35	0.20 - 0.35
	High 1	ension Coil ©	Primary	Ω	0.2 - 0.5	0.2 - 0.5
	Carbu	retor Type	Secondary	kΩ PTO/CTR/MAG	6 – 13 3 x VM 38 393	6 – 13 TM 38 C195
	Main			PT0/CTR/MAG	300	330/340/330
	Need			TTO/CTT/MAG	480-P9	327-03
	Pilot				50	50
<b>_</b>		e Identification			6DEY2-4	8ABY1-40-3
		o position Cut-away			2.5	6ABT1-40-5 4.0
		Adjustment		± 1 mm (± .040 in)	18.1 (.71)	20.0 (.78)
		rew Adjustment		± 1/16 Turn	2	2.0
	Idle S	peed		± 200 RPM	1800	1800
	Gas T	ype/Pump Octane Number			Super Unleaded/91	Super Unleaded/91
	Gas/O	il Ratio			Injection	Injection
	Туре				Liquid	Liquid
	Avial	Fan Belt Adjustment	Deflection	mm (in)	N.A.	N.A.
<b>F</b>	,	a. Doit najaotinont	Force	kg (lbf)	N.A.	N.A.
~~~~	Thermostat Opening Temperature °C (°F)				42 (108)	42 (108)
	Radia	tor Cap Opening Pressure		kPa (PSI)	90 (13)	90 (13)
		Drive Pulley Retaining Screw	5	5		
		Exhaust Manifold Nuts or Bolts	10 (7)	10 (7)		
	Ę	Magneto Ring Nut			125 (92)	125 (92)
∫ ([©])	ENGINE COLD Nom (Iboft)	Crankcase Nuts or Screws M6 M8			13 (9.5) 29 (21)	13 (9.5) 29 (21)
	2 S	Crankcase/Engine Support Nut	s or Screws		35 (26)	35 (26)
Ť		Cylinder Head Nuts			29 (21)	29 (21)
		Crankcase/Cylinder Nuts or Sc	rews		29 (21)	29 (21)
		Axial Fan Shaft Nut			N.A.	N.A.

Section 10 TECHNICAL DATA Subsection 03 (VEHICLES)

BOMBARDIER	VEHICLE MODEL	VEHICLE MODEL				GRAND TOURING SE	FORMULA III 600	FORMULA III 600 R
	ENGINE TYPE				699	699	599	599
	Chain Drive Ratio				24/44	24/44	25/43	25/44
	Chain	Pitch		in	3/8	3/8	3/8	3/8
	Gilalli	Type/Links Qty/P	lates Qty		Silent 72/13	Silent 72/13	Silent 72/13	Silent 72/13
		Type of Drive Pu	lley		TRA	TRA	TRA	TRA
		Ramp Identificat	ion and Roller Pin Type		286 5	286 5	285 ©	285 ©
	Drive Pulley	Calibration Scree Calibration Disc			3	2	4	4
	Driver uney	Spring Color			Blue/Violet	Blue/Pink	Green/Violet	Green/Violet
		Spring Length		± 1.5 mm (± .060 in)	96.6 (3.80)	93.5 (3.68)	126.7 (4.99)	126.7 (4.99)
		Clutch Engagem	ent ±	200 RPM	3600	3600	3800	3800
	Driven Pulley Spri Cam Angle	ng Preload	±0.7	kg (± 1.5 lb) Degree	7.0 (15.4) 47	7.0 (15.4) 47	7.0 (15.4) 50	7.0 (15.4) 50
	Pulley Distance	Z		0, - 1) mm 040) in)	120.0 (4.724)	120.0 (4.724)	120.0 (4.724)	120.0 (4.724)
\varkappa		Х	± 0.5 mm	(± .020 in)	35.5 (1.398)	35.5 (1.398)	35.5 (1.398)	35.5 (1.398)
	Offset	Y – X	MIN. – MAX.	mm (in)	1.0 – 2.0 (.039 – .079)	1.0 – 2.0 (.039 – .079)	1.0 – 2.0 (.039 – .079)	1.0 – 2.0 (.039 – .079)
)	Drive Belt Part Nu	ımber (P/N)			415 0450 00	415 0450 00	415 0450 00	415 0450 00
	Drive Belt Width (new)		mm (in)	35.56 (1.400)	35.56 (1.400)	35.56 (1.400)	35.56 (1.400)
	Drive Belt Adjustr	nent	Deflection (=	±5mm ±13/64in)	38 (1-1/2)	38 (1-1/2)	38 (1-1/2)	38 (1-1/2)
	-		Force @	kg (lbf)	11.5 (25)	11.5 (25)	11.5 (25)	11.5 (25)
		Width		cm (in)	38.1 (15.0)	38.1 (15.0)	38.1 (15.0)	38.1 (15.0)
		Length cm (in)		345.5 (136)	345.5 (136)	307.4 (121)	307.4 (121)	
	Track	Profile Height		mm (in)	22.3 (.878)	22.3 (.878)	22.3 (.878)	22.3 (.878)
		Adjustment	Deflection	mm (in)	35 – 40 (1-3/8 – 1-3/4)	35 – 40 (1-3/8 – 1-3/4)	35 – 40 (1-3/8 – 1-3/4)	35 – 40 (1-3/8 – 1-3/4)
			Force ③	kg (lbf)	7.3 (16)	7.3 (16)	7.3 (16)	7.3 (16)
	Suspension Type		Track		SC-10 HP	SC-10 HP	SC-10 HP	SC-10 HP
			Ski	(1.)	DSA	DSA	DSA	DSA
	Length			cm (in)	303.5 (119.5)	303.5 (119.5)	277.5 (109.3)	277.5 (109.3)
	Width			cm (in)	118.1 (46.5)	118.1 (46.5) 130.0 (51.2)	115.8 (45.6)	115.8 (45.6)
	Height Ski Stance			cm (in) cm (in)	130.0 (51.2) 104.1 (41)	130.0 (51.2)	114.3 (45.0) 104.1 (41)	114.3 (45.0) 104.1 (41)
-1	Mass (dry)			kg (lb)	283 (622)	291 (640)	249 (548)	254 (559)
	Ground Contact A	rea		cm ² (in ²)	7549.2 (1170.1)	7549.2 (1170.1)	6390.9 (990.6)	6390.9 (990.6)
	Ground Contact P			kPa (PSI)	3.68 (.534)	3.78 (.548)	3.82 (.554)	3.90 (.559)
	Frame Material				Aluminum	Aluminum	Aluminum	Aluminum
	Bottom Pan Mate	rial			Impact Copolymer	Impact Copolymer	Impact Copolymer	Impact Copolymer
	Hood Material				TPO	TPO	TPO	TPO
	Battery			V (A∙h)	12/22	12/22	N.A.	N.A.
	Headlight W				H4 60/55	H4 60/55	H4 60/55	H4 60/55
/	Taillight and Stoplight W			8/27	8/27	8/27	8/27	
* [*	Tachometer and Speedometer Bulbs		\$	W	3	3	3	3
/	Fuel and Tempera	<u> </u>		W	3	3	3	3
	Fuse	Starter Solenoid		A	30	30	N.A.	N.A.
		Fuel Level Senso		A	0.25	0.25	0.25	0.25
	Fuel Tank			(U.S. gal)	42 (11.1)	42 (11.1)	42 (11.1)	42 (11.1)
	Chaincase/Gearb			(U.S. oz)	250 (8.5)	250 (8.5)	250 (8.5)	250 (8.5)
	Cooling System @			(U.S. oz)	5.1 (172.5)	5.1 (172.5)	5.0 (169)	5.0 (169)
E	Injection Oil Rese			. (U.S. oz)	4.1 (138.7)	4.1 (138.7)	4.1 (138.7)	4.1 (138.)

Subsection 03 (VEHICLES)

BOMBARDIER	VEHICLE MODEL			FORMULA III 600 LT	FORMULA III 700	FORMULA III 700 R	MACH 1
	ENGINE TYPE			599	699	699	699
	Chain Drive Ratio			23/43	26/43	26/44	26/43
	Oh - in	Pitch	in	3/8	3/8	3/8	3/8
	Chain	Type/Links Qty/P	ates Qty	Silent 72/13	Silent 72/13	Silent 74/13	Silent 72/13
		Type of Drive Pul	ey	TRA	TRA	TRA	TRA
		Ramp Identificati	on and Roller Pin Type	285 ⑤	286 5	286 5	286 5
ĺ	Drive Pulley	Calibration Screw Calibration Disc		4	3	3	2
	Drive Fulley	Spring Color		Green/Violet	Green/Blue	Green/Blue	Green/Violet
		Spring Length	± 1.5 mm (± .060 in)	126.7 (4.99)	147.4 (5.80)	147.4 (5.80)	126.7 (4.99)
		Clutch Engageme	ent ± 200 RPM	3800	4200	4200	4200
	Driven Pulley Spr Cam Angle	ing Preload	± 0.7 kg (± 1.5 lb) Degree	7.0 (15.4) 50	7.0 (15.4) 50	7.0 (15.4) 50	7.0 (15.4) 50 – 47
\bigcirc	Pulley Distance	Z	(+ 0, - 1) mm (+ 0, - 1/32) in)	120.0 (4.724)	120.0 (4.724)	120.0 (4.724)	120.0 (4.724)
		Х	± 0.4 mm (± 1/64 in)	35.5 (1.398)	35.5 (1.398)	35.5 (1.398)	35.5 (1.398)
	Offset	Y - X	MIN. – MAX. mm (in)	1.0 - 2.0 (.039079)	1.0 - 2.0 (.039079)	1.0 - 2.0 (.039079)	1.0 – 2.0 (.039 – .079)
	Drive Belt Part Nu	umber (P/N)		415 0450 00	415 0450 00	415 0450 00	415 0450 00
	Drive Belt Width ((new) ①	mm (in)	35.56 (1.400)	35.56 (1.400)	35.56 (1.400)	35.56 (1.400)
	Drive Belt Adjustr	ment	Deflection $\pm 5 \text{ mm} \\ (\pm 13/64 \text{ in})$	38 (1-1/2)	38 (1-1/2)	38 (1-1/2)	38 (1-1/2)
	-		Force ② kg (lbf)	11.5 (25)	11.5 (25)	11.5 (25)	11.5 (25)
		Width	cm (in)	38.1 (15.0)	38.1 (15.0)	38.1 (15.0)	38.1 (15.0)
		Length	cm (in)	345.5 (136)	307.4 (121)	307.4 (121)	307.4 (121)
	Track	Profile Height	mm (in)	22.3 (.878)	22.3 (.878)	22.3 (.878)	22.3 (.878)
		Adjustment	Deflection mm (in)	35 – 40 (1-3/8 – 1-3/4)	35 – 40 (1-3/8 – 1-3/4)	35 – 40 (1-3/8 – 1-3/4)	35 – 40 (1-3/8 – 1-3/4)
			Force ③ kg (lbf)	7.3 (16)	7.3 (16)	7.3 (16)	7.3 (16)
	Suspension Type		Track	SC-10 HP	SC-10 HP	SC-10 HP	SC-10 HP
			Ski	DSA	DSA	DSA	DSA
	Length Width		cm (in)	2972.0 (117.0) 118.1 (46.5)	277.5 (109.3) 115.8 (45.6)	277.5 (109.3) 115.8 (45.6)	277.5 (109.3)
	Height		cm (in) cm (in)	116.1 (46.5)	115.8 (45.0)	115.8 (45.0)	115.8 (45.6) 114.3 (45.0)
	Ski Stance		cm (in)	104.1 (41)	104.1 (41)	104.1 (41)	104.1 (41)
Ar.	Mass (dry)		kg (lb)	252 (554)	243 (534)	248 (545)	251 (552)
	Ground Contact A	rea	cm ² (in ²)	7549.2 (1170.1)	6390.9 (990.6)	6390.9 (990.6)	6390.9 (990.6)
	Ground Contact P	ressure	kPa (PSI)	3.27 (.474)	3.73 (.541)	3.81 (.552)	3.85 (.558)
	Frame Material			Aluminum	Aluminum	Aluminum	Aluminum
	Bottom Pan Mate	rial		Impact Copolymer	Impact Copolymer	Impact Copolymer	Impact Copolymer
	Hood Material			TPO	TPO	TPO	TPO
	Battery		V (A•h)	N.A.	N.A.	N.A.	N.A.
	Headlight		W	H4 60/55	H4 60/55	H4 60/55	H4 60/55
جے /	Taillight and Stoplight W Tachometer and Speedometer Bulbs W			8/27	8/27	8/27	8/27
7				3	3	3	3
/	Fuel and Temperature Gauge Bulbs		W	3	3	3	3
	Fuse	Starter Solenoid	A	N.A.	N.A.	N.A.	N.A.
	Fuel Zeels	Fuel Level Senso		0.25	0.25	0.25	0.25
Juni	Fuel Tank	<u></u>	L (U.S. gal)	42 (11.1)	42 (11.1)	42 (11.1)	42 (11.1)
	Chaincase/Gearb		mL (U.S. oz)	250 (8.5)	250 (8.5)	250 (8.5)	250 (8.5)
	Cooling System 4 Injection Oil Rese		L (U.S. oz) L (U.S. oz)	5.0 (169) 4.1 (138.7)	5.0 (169) 4.1 (138.7)	5.0 (169) 4.1 (138.7)	5.0 (169) 4.1 (138.7)

Subsection 03 (VEHICLES)

BOMBARDIER	VEHICLE MODEL			MACH 1 R	MACH Z	MACH Z R	MACH Z LT
	ENGINE TYPE			699	809	809	809
	Chain Drive Ratio			26/44	27/43	27/44	25/43
	Chain	Pitch	in	3/8	3/8	3/8	3/8
	Chain	Type/Links Qty/P	lates Qty	Silent 74/13	Silent 72/13	Silent 74/13	Silent 72/13
		Type of Drive Pu	1	TRA	TRA	TRA	TRA
		-	ion and Roller Pin Type	286 5	286 5	286 5	286 ⑤
	Drive Pulley	Calibration Scree Calibration Disc		2	2	2	2
	Drive Fulley	Spring Color		Green/Violet	Violet/Green	Violet/Green	Violet/Green
		Spring Length	± 1.5 mm (± .060 in)	126.7 (4.99)	133.5 (5.26)	133.5 (5.26)	133.5 (5.26)
		Clutch Engagem	ent ± 200 RPM	4200	3900	3900	3900
	Driven Pulley Spri Cam Angle	ng Preload	± 0.7 kg (± 1.5 lb) degree	7.0 (15.4) 50 – 47			
	Pulley Distance	Z	(+ 0, - 1) mm ((+ 0, - 1/32) in)	120.0 (4.724)	120.0 (4.724)	120.0 (4.724)	120.0 (4.724)
\bowtie		Х	± 0.4 mm (± 1/64 in)	35.5 (1.398)	35.5 (1.398)	35.5 (1.398)	35.5 (1.398)
	Offset	Y – X	MIN. – MAX. mm (in)	1.0 – 2.0 (.039 – .079)	1.0 - 2.0 (.039079)	1.0 – 2.0 (.039 – .079)	1.0 – 2.0 (.039 – .079)
	Drive Belt Part Nu	ımber (P/N)		415 0450 00	415 0450 00	415 0450 00	415 0450 00
	Drive Belt Width (new)	mm (in)	35.56 (1.400)	35.56 (1.400)	35.56 (1.400)	35.56 (1.400)
	Drive Belt Adjustr	nent	Deflection ± 5 mm ($\pm 13/64$ in)	38 (1-1/2)	38 (1-1/2)	38 (1-1/2)	38 (1-1/2)
	-		Force ② kg (lbf)	11.5 (25)	11.5 (25)	11.5 (25)	11.5 (25)
		Width	cm (in)	38.1 (15.0)	38.1 (15.0)	38.1 (15.0)	38.1 (15.0)
		Length	cm (in)	307.4 (121)	307.4 (121)	307.4 (121)	345.5 (136)
	Track	Profile Height	mm (in)	22.3 (.878)	22.3 (.878)	22.3 (.878)	22.3 (.878)
		Adjustment	Deflection mm (in)	35 – 40 (1-3/8 – 1-3/4)			
			Force ③ kg (lbf)	7.3 (16)	7.3 (16)	7.3 (16)	7.3 (16)
	Suspension Type		Track	SC-10 HP	SC-10 HP	SC-10 HP	SC-10 HP
			Ski	DSA	DSA	DSA	DSA
	Length		cm (in)	277.5 (109.3)	277.5 (109.3)	277.5 (109.3)	297.2 (117.0)
	Width		cm (in)	115.8 (45.6)	115.8 (45.6)	115.8 (45.6)	118.1 (46.5)
	Height		cm (in)	114.3 (45.0)	114.3 (45.0)	114.3 (45.0)	114.3 (45.0)
	Ski Stance Mass (dry)		cm (in)	104.1 (41) 256 (563)	104.1 (41) 258 (568)	104.1 (41) 264 (580)	104.1 (41) 261 (574)
\sim	Ground Contact A	roo	kg (lb) cm² (in²)	6390.9 (990.6)	6390.9 (990.6)	6390.9 (990.6)	7549.2 (1170.1)
	Ground Contact P		kPa (PSI)		3.96 (.574)	4.05 (.588)	3.39 (.492)
	Frame Material	1000010		Aluminum	Aluminum	Aluminum	Aluminum
	Bottom Pan Mate	rial		Impact Copolymer	Impact Copolymer	Impact Copolymer	Impact Copolymer
	Hood Material			TPO	TPO	TPO	TPO
	Battery		V (A•h)	N.A.	N.A.	N.A.	N.A.
	Headlight		W	H4 60/55	H4 60/55	H4 60/55	H4 60/55
/	Taillight and Stoplight W			8/27	8/27	8/27	8/27
4 * *	Tachometer and Speedometer Bulbs			3	3	3	3
	Fuel and Tempera	ture Gauge Bulbs	W	3	3	3	3
	Fuse Starter Sole				N.A.	N.A.	N.A.
		Fuel Level Senso		0.25	0.25	0.25	0.25
	Fuel Tank		L (U.S. gal)	42 (11.1)	42 (11.1)	42 (11.1)	42 (11.1)
	Chaincase/Gearb		mL (U.S. oz)	250 (8.5)	250 (8.5)	250 (8.5)	250 (8.5)
	Cooling System @		L (U.S. oz)	5.0 (169)	5.0 (169)	5.0 (169)	5.0 (169)
	Injection Oil Rese	rvoir	L (U.S. oz)	4.1 (138.7)	4.1 (138.7)	4.1 (138.7)	4.1 (138.7)

Subsection 03 (VEHICLES)

BOMBARDIER	VEHICLE MODEL				MACH Z LT SV TRACK	MACH Z LT R
	ENGINE TYPE				809	809
	Chain Drive Ratio				23/43	25/44
	Chain	Pitch		in	3/8	3/8
	Chain	Type/Links Qty/P	lates Qty		Silent 72/13	Silent 72/13
		Type of Drive Pu	lley		TRA	TRA
		Ramp Identificat	ion and Roller Pin Type		286 5	286 5
	Drive Pulley	Calibration Screv Calibration Disc			2	2
	Dirive Fulley	Spring Color			Violet/Green	Violet/Green
		Spring Length		± 1.5 mm (± .060 in)	133.5 (5.26)	133.5 (5.26)
		Clutch Engagem	ent	± 200 RPM	3900	3900
	Driven Pulley Spri Cam Angle	ng Preload		±0.7 kg (±1.5 lb) Degree	7.0 (15.4) 50 – 47	7.0 (15.4) 50 – 47
	Pulley Distance	Z		(+ 0, - 1) mm ((+ 0, - 1/32) in)	120.0 (4.724)	120.0 (4.724)
\bowtie		Х		mm (± 1/64 in)	35.5 (1.398)	35.5 (1.398)
	Offset	Y – X	MIN. – MAX.	mm (in)	1.0 – 2.0 (.039 – .079)	1.0 – 2.0 (.039 – .079)
)	Drive Belt Part Nu	mber (P/N)			415 0450 00	415 0450 00
	Drive Belt Width (new) 🛈		mm (in)	35.56 (1.400)	35.56 (1.400)
	Drive Belt Adjustn	nent	Deflection	± 5 mm (± 13/64 in)	38 (1-1/2)	38 (1-1/2)
		1	Force @	kg (lbf)	11.5 (25)	11.5 (25)
		Width cm (i				38.1 (15.0)
		Length		cm (in)	345.5 (136)	345.5 (136)
	Track	Profile Height		mm (in)	50.8 (2.0) 35 – 40	22.3 (.878)
		Adjustment	Deflection	mm (in)	35 – 40 (1-3/8 – 1-3/4)	35 – 40 (1-3/8 – 1-3/4)
			Force 3	kg (lbf)	7.3 (16)	7.3 (16)
	Suspension Type		Track		SC-10 HP	SC-10 HP
	Suspension Type		Ski		DSA	DSA
	Length			cm (in)	297.2 (117.0)	297.2 (117.0)
	Width			cm (in)	118.1 (46.5)	118.1 (46.5)
	Height			cm (in)	116.9 (46.0)	114.3 (45.0)
	Ski Stance			cm (in)	104.1 (41)	104.1 (41)
\sim	Mass (dry) Ground Contact A	100		kg (lb)	261 (574)	266 (585)
	Ground Contact A			cm² (in²) kPa (PSI)	7549.2 (1170.1) 3.39 (.492)	7549.2 (1170.1) 3.46 (.501)
	Frame Material	lessure		KF d (F 31)	Aluminum	Aluminum
	Bottom Pan Mater	rial			Impact Copolymer	Impact Copolymer
	Hood Material				TPO	TPO
	Battery		V (A∙h)	N.A.	N.A.	
	Headlight		H4 60/55	H4 60/55		
	Taillight and Stop	ight	8/27	8/27		
4 1	Tachometer and Speedometer Bulbs W				3	3
	Fuel and Temperature Gauge Bulbs W				3	3
	Fuse	Starter Solenoid		А	N.A.	N.A.
	Fuel Level Sensor A			0.25	0.25	
	Fuel Tank	Fuel Tank L (U.S. gal)				42 (11.1)
	Chaincase/Gearbo			mL (U.S. oz)	250 (8.5)	250 (8.5)
	Cooling System ④			L (U.S. oz)	5.0 (169)	5.0 (169)
	Injection Oil Rese	rvoir		L (U.S. oz)	4.1 (138.7)	4.1 (138.7)

ENGINE LEGEND

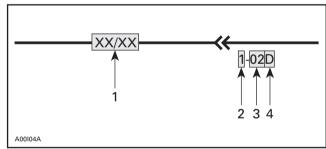
BTDC: Before Top Dead Center

- CDI: Capacitor Discharge Ignition
- CTR: Center
- K: Kilo (× 1000)
- MAG: Magneto Side
- N.A.: Not Applicable
- PTO: Power Take Off Side
- R: Rectangular
- ST: Semi-trapez
- ① The maximum horsepower RPM applicable on the vehicle. It may be different under certain circumstances and BOMBARDIER INC. reserves the right to modify it without obligation.
- ② Crankshaft end-play is not adjustable on these models. Specification is given for verification purposes only.
- ③ At 6000 RPM (engine cold) with headlamp turned on.
- ④ All resistance measurements must be performed with parts at room temperature (approx. 20°C (68°F)). Temperature greatly affects resistance measurements.
- ⑤ Drive pulley retaining screw: torque to 90 to 100 N•m (66 to 74 lbf•ft), install drive belt, accelerate the vehicle at low speed (maximum 30 km/h (20 MPH)) and apply the brake; repeat 5 times. Recheck the torque of 90 to 100 N•m (66 to 74 lbf•ft).

VEHICLE LEGEND

- DSA: Direct Shock Action
- TPO: Thermo Plastic Olefin
- TRA: Total Range Adjustable
- N.A.: Not Applicable
- ① Minimum allowable width may not be less than 3.0 mm (1/8 in) of new drive belt.
- ⁽²⁾ Force applied midway between pulleys to obtain specified tension deflection.
- ③ Force or downward pull applied to track to obtain specified tension deflection.
- ④ Coolant mixture: 60% antifreeze/40% water.
- (5) Lever with roller pin (P/N 417 0043 08) (solid).

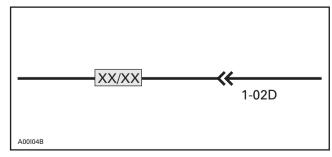
WIRING DIAGRAMS


MODEL	WIRING DIAGRAM PAGE	HEADLIGHT (watt)	TAILLIGHT (watt)	ELECTRICAL SYSTEM OUTPUT (watt)
Formula III 600/600 R/ 600 LT/700/700 R Mach 1/1 R	Annex 1	60/55 hal.	8/27	290
Mach Z/Z R/Z LT/Z LT R	Annex 2	60/55 hal.	8/27	290
GT 700	Annex 3	60/55 hal.	8/27	360
GT SE	Annex 4	60/55 hal.	8/27	360

hal. = halogen

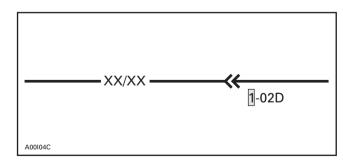
WIRING DIAGRAM LEGEND

WARNING


Ensure all terminals are properly crimped on the wires and all connector housings are properly fastened.

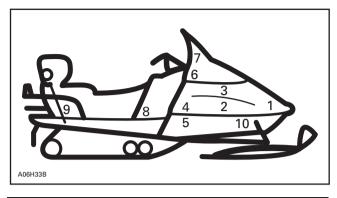
- 1 Wire colors

- Housing area
 Housing number per area
 Wire connector location in housing

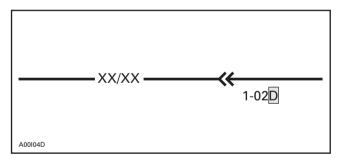


The first color of a wire is the main color, second color is the stripe.

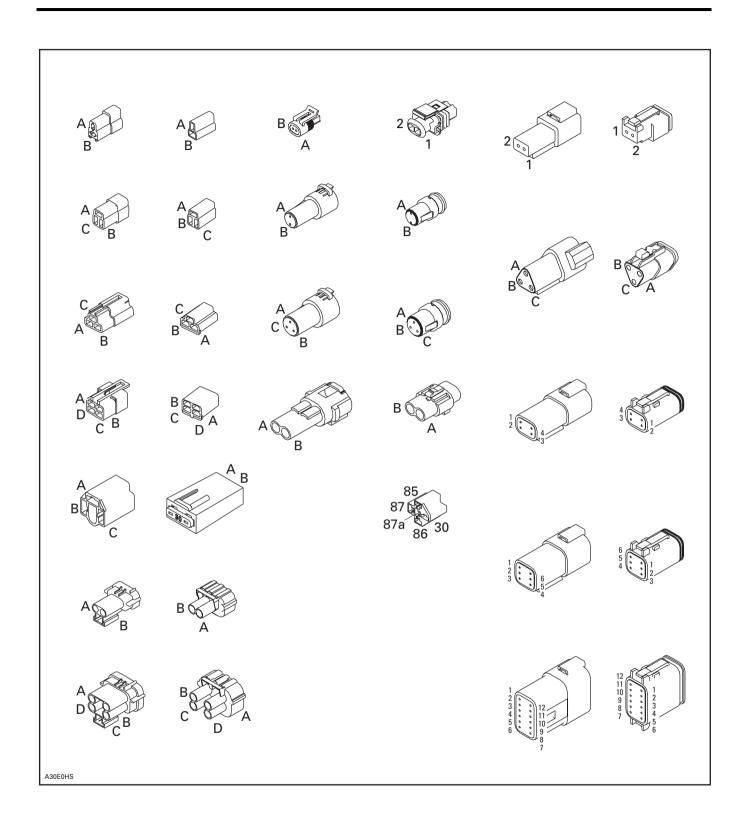
Example: YL/BK is a YELLOW wire with a BLACK stripe.


COLO	R CODE
BK — BLACK WH — WHITE RD — RED BL — BLUE YL — YELLOW BE — BEIGE	GN — GREEN GY — GREY VI — VIOLET OR — ORANGE BR — BROWN

CONNECTOR HOUSING AREA

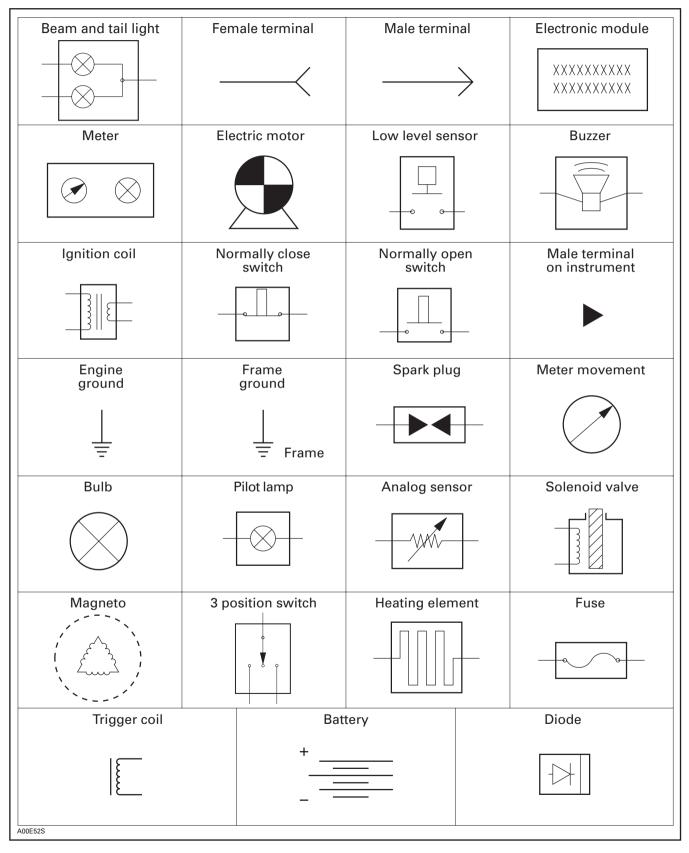

Section 11 WIRING DIAGRAMS

Subsection 01 (WIRING DIAGRAMS)



AREA	LOCATION
1	Front of engine compartment
2	Magneto
3	Carburetors
4	Near of intake silencer
5	Near driven pulley
6	Under console
7	Under hood
8	Near fuel tank
9	Rear of seat
10	Under engine

CONNECTOR LOCATION IN HOUSING


Section 11 WIRING DIAGRAMS Subsection 01 (WIRING DIAGRAMS)

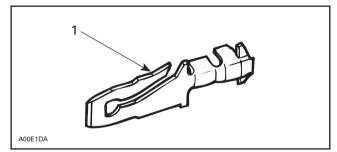
Section 11 WIRING DIAGRAMS

Subsection 01 (WIRING DIAGRAMS)

SYMBOLS DESCRIPTION

UNPLUGING CONNECTORS

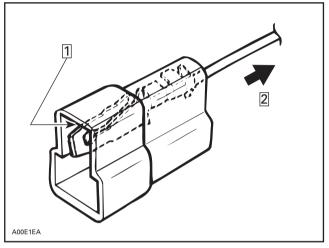
Always unplug connectors by pulling on housing not on wire.


A06E1PA

TYPICAL

TAB AND RECEPTACLE CONNECTORS REMOVAL

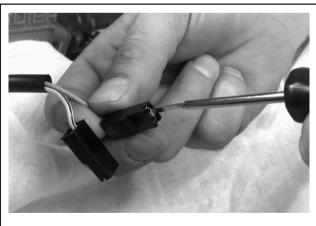
Tab Connector


It is locked in its housing by a spring tab on its side. Removal is done by squeezing this tab.

TAB CONNECTOR1. Locking tab

To remove:

- Insert a screwdriver or Snap-on TT 600-5 from opposite side of wire and pry locking tab.
- While holding locking tab pried, pull connector toward wire side.



Step 1 : Insert screwdriver here Step 2 : Pull this side

Locking Receptacle Connector

To remove:

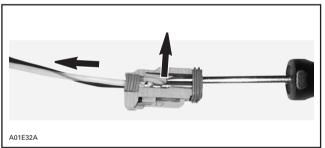
 Insert tool Snap-on TT 600-5 in access opening then pull housing toward wire side.

A06E1QA

Section 11 WIRING DIAGRAMS

Subsection 01 (WIRING DIAGRAMS)

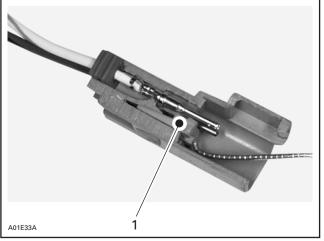
Waterproof Connector Housing

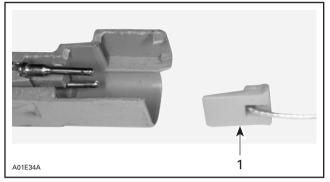

Female Connector Housing

To remove:

 Insert tool Snap-on TT 600-5 under lock and twist to lift it.

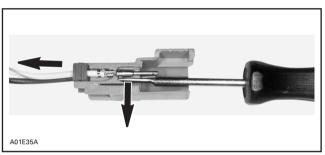
Pry tab to free connector then pull wire out of housing.




FEMALE CONNECTOR HOUSING - CUT-AWAY

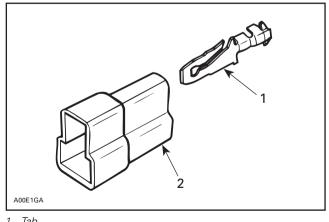
Male Connector Housing

To remove:


- Using a small hook, pull out the lock.

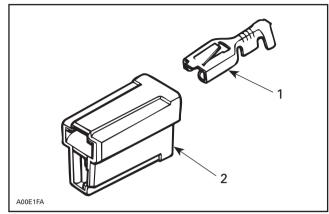
1. Lock

Pry tab to free connector then pull wire out of housing.



MALE CONNECTOR HOUSING - CUT-AWAY

TAB AND RECEPTACLE CONNECTORS INSTALLATION


Prior to installing, make sure locking tab is sufficiently lifted to properly lock.

Insert tab and receptacle connectors in their respective housings as shown in following illustrations. Push sufficiently so that they snap. Try pulling wire to ensure they are properly locked.

1. Tab 2. Housing

1. Lock

TYPICAL

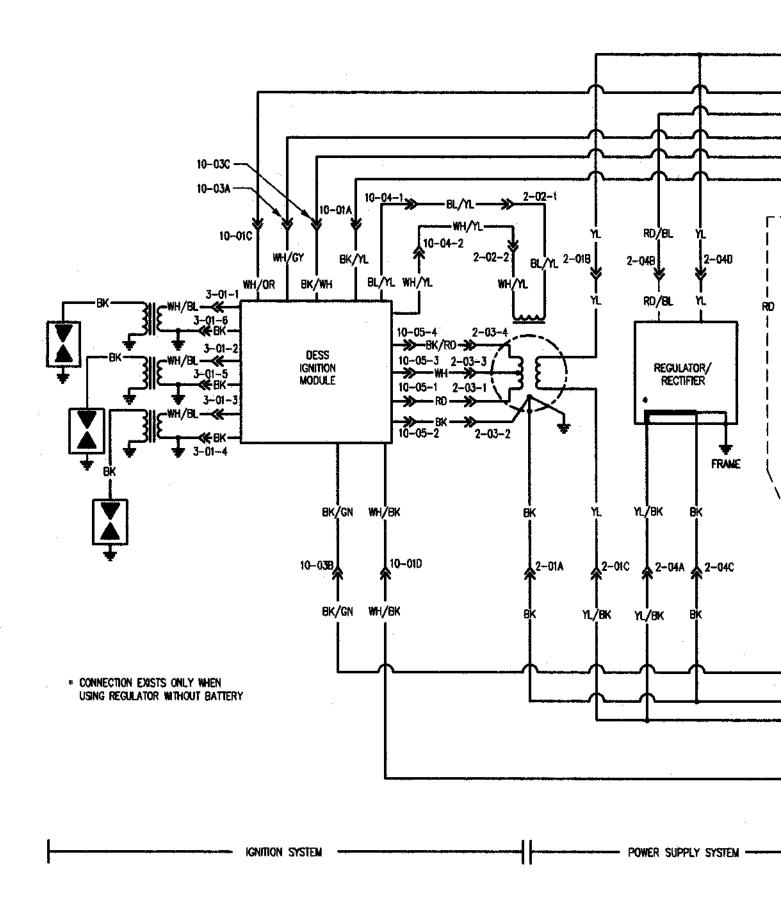
- 1. Receptacle
- 2. Housing

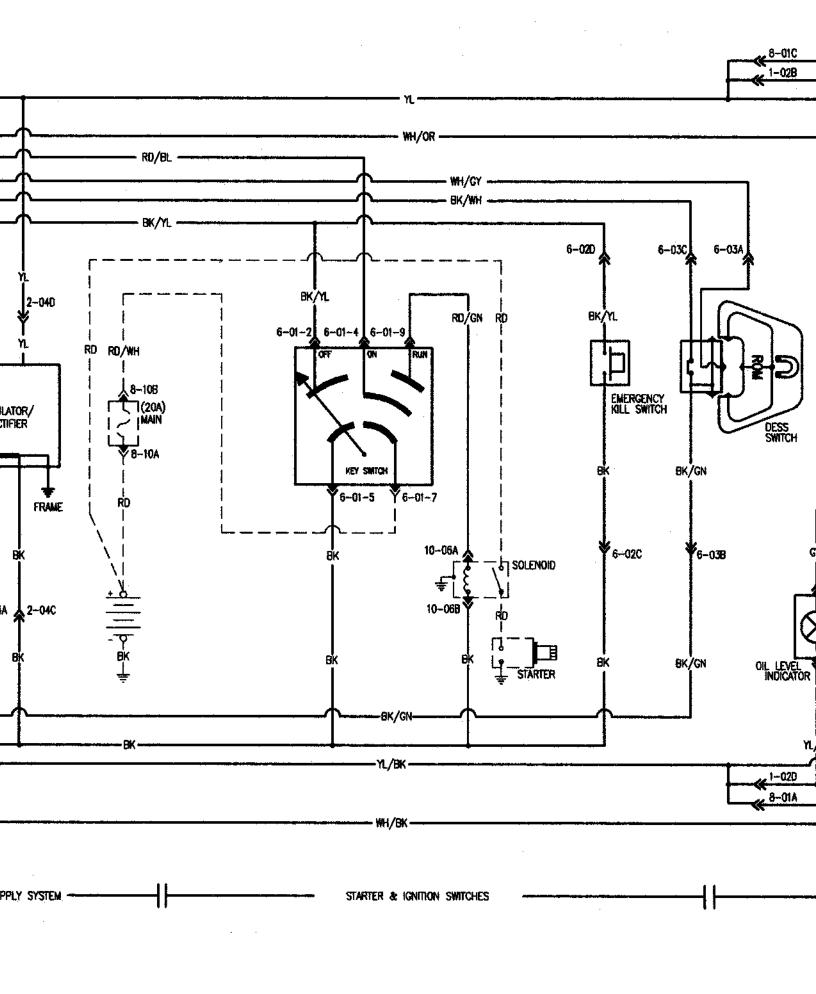
ACCESSORIES INSTALLATION

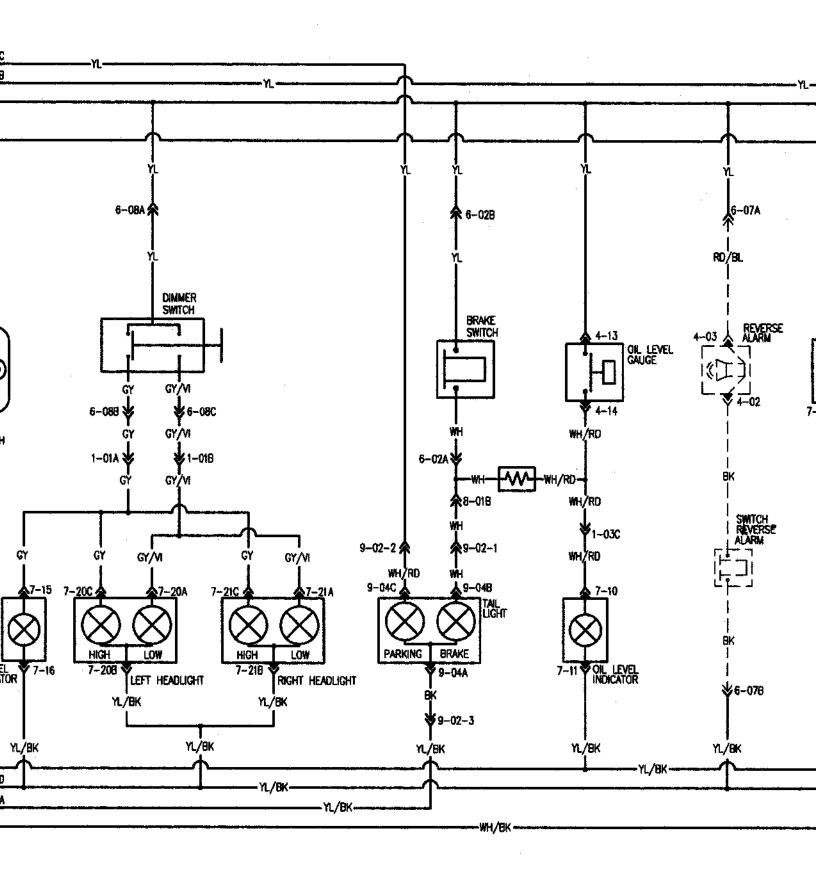
On all **electric start models:** The direct current (DC) utilizes the snowmobile frame as ground "wire" while all alternating current (AC) consumers (lights, heated grips, fuel gauge, etc.) utilize a separate ground wire.

Never interconnect AC and DC grounds as an AC voltage drop will result. When installing accessories on **any** snowmobile, connect their wires directly to the YELLOW and YELLOW/BLACK lighting coil wires.

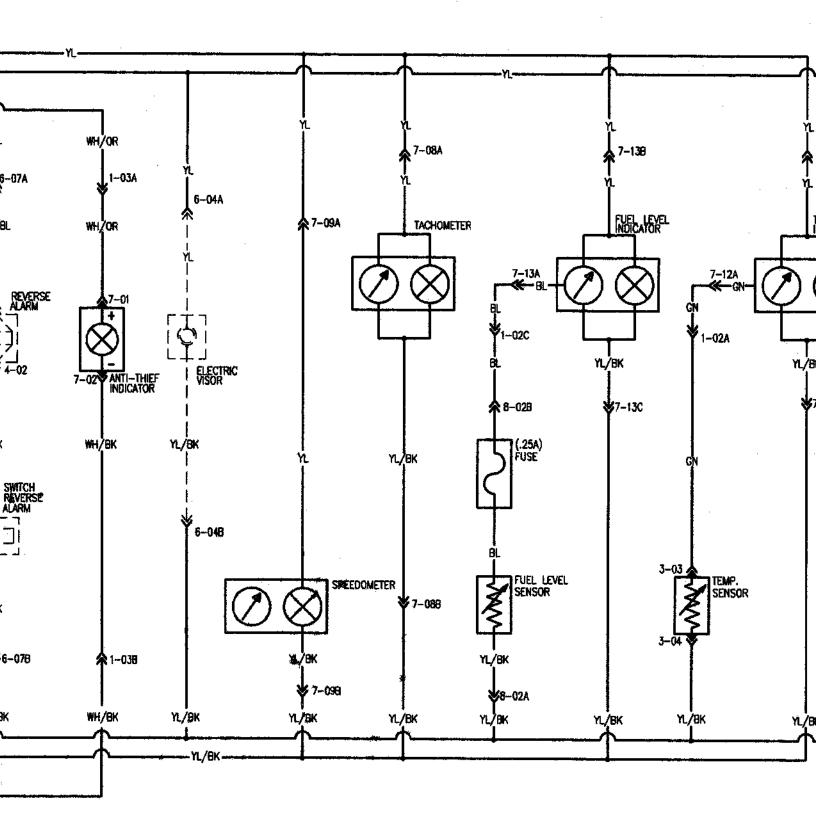
Even if **manual start models** have an AC ground to the chassis (on voltage regulator), all accessories utilize a ground wire isolated from chassis. When an electric starter kit is installed, the voltage regulator and its ground wire are replaced by a voltage rectifier/regulator unit permitting a completely isolated AC circuit.

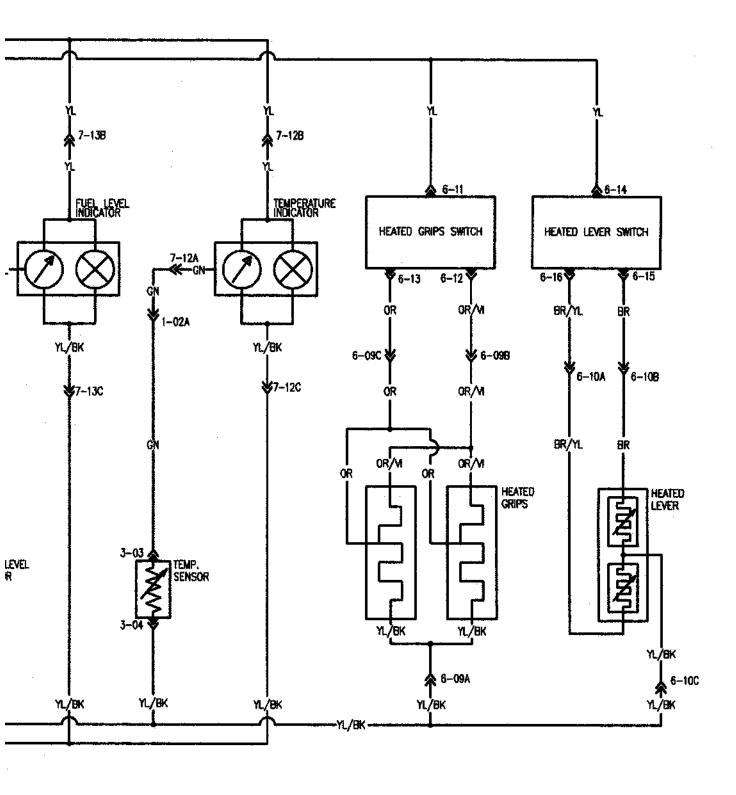

WARNING


Keep wires away from any rotating, moving, heating, vibrating or sharp edge. Use proper fastening devices as required.

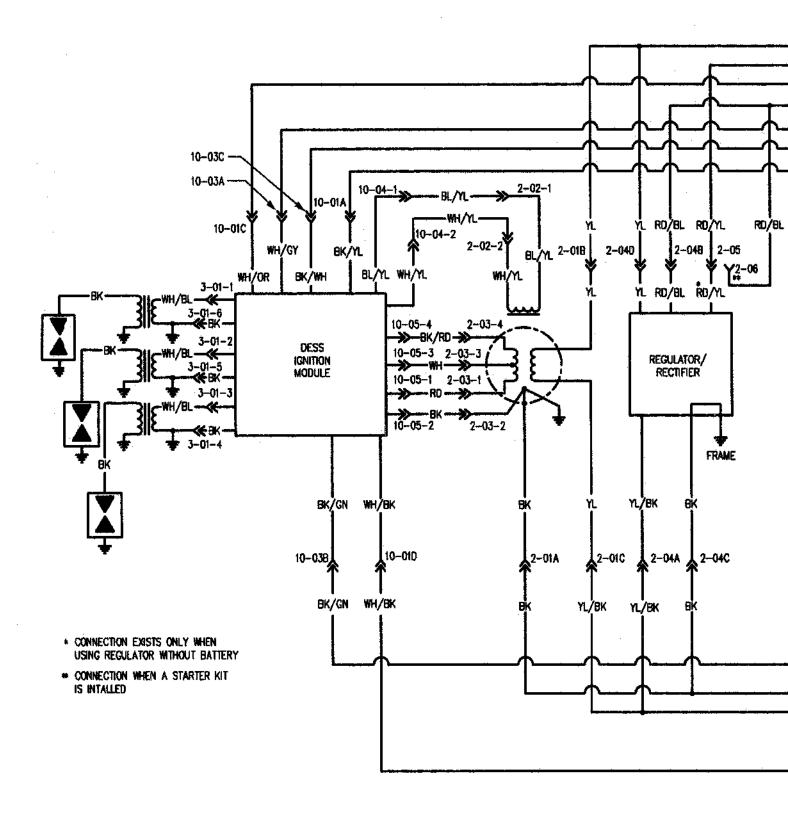

FORMULA 111 600/600 R 600 LT/700/700 R MACH 1/1 R

ANNEX 1

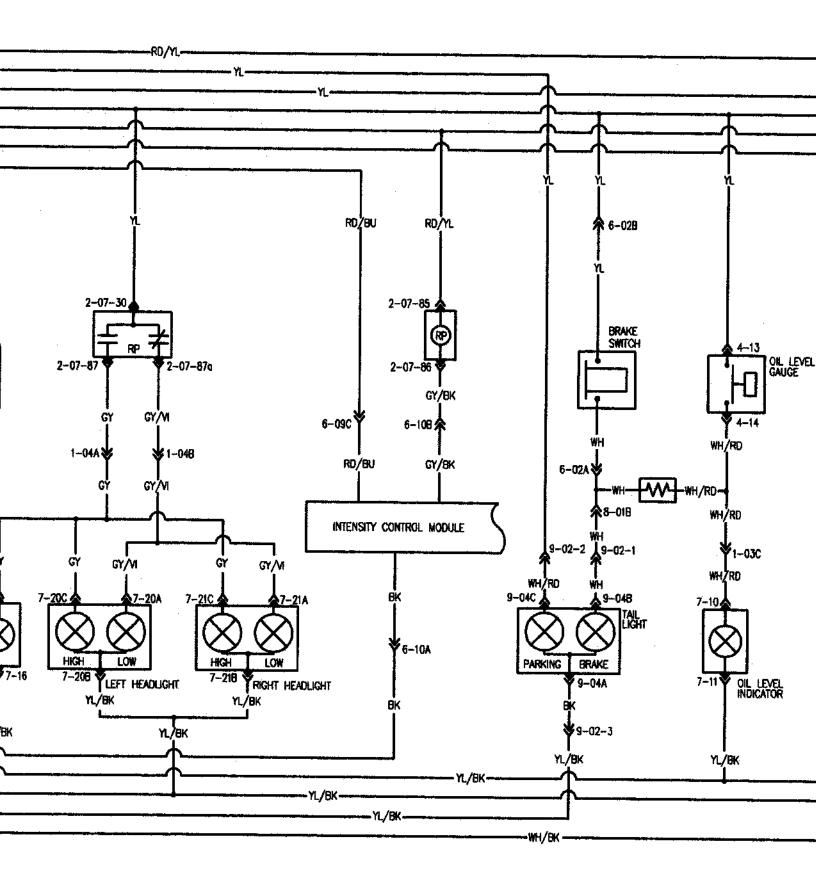

```
'98 FORMULA III 600 \setminus 600 R \setminus 600 LT \setminus 700 \setminus 700 R '98 MACH 1 \setminus 1 R
```

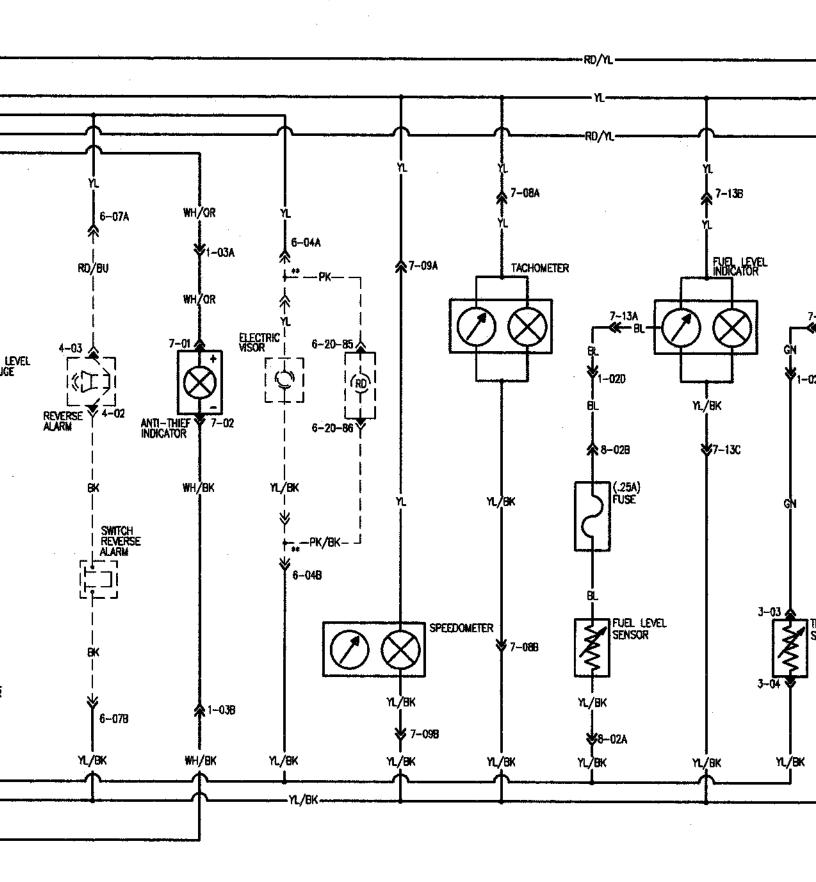
41

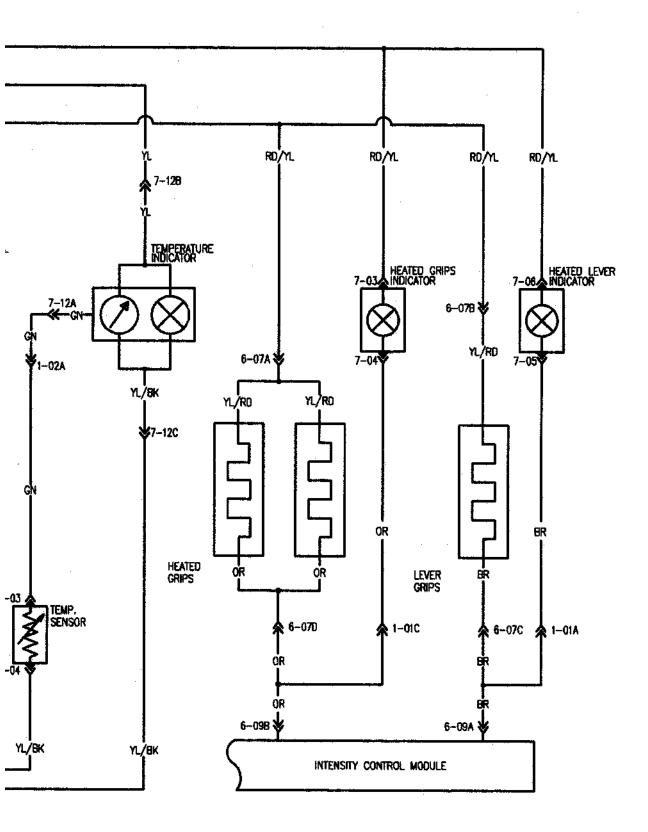

INSTRUMENT

HEATING ELEMENTS


MACH Z/Z R/Z LT/Z LT R

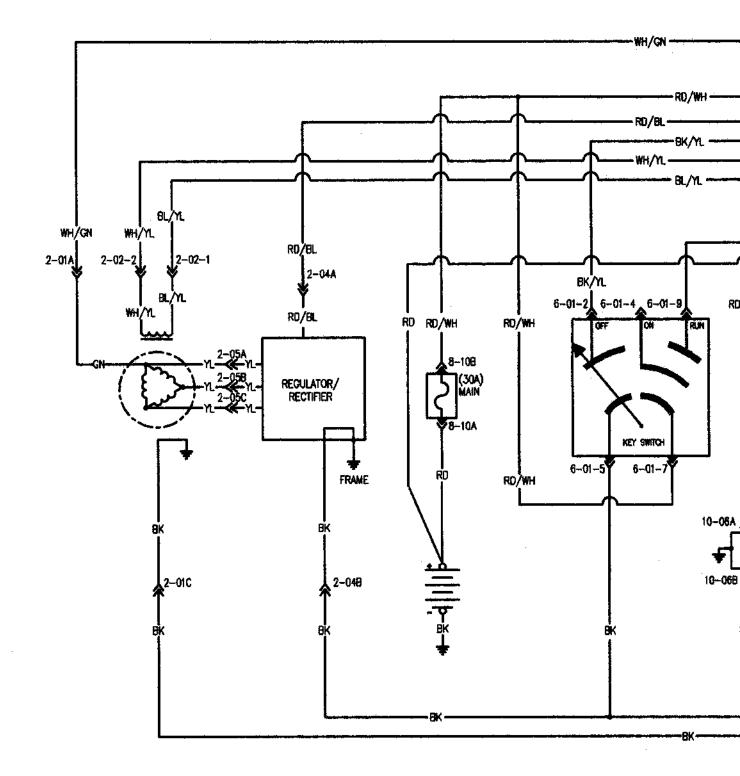
ANNEX 2


.

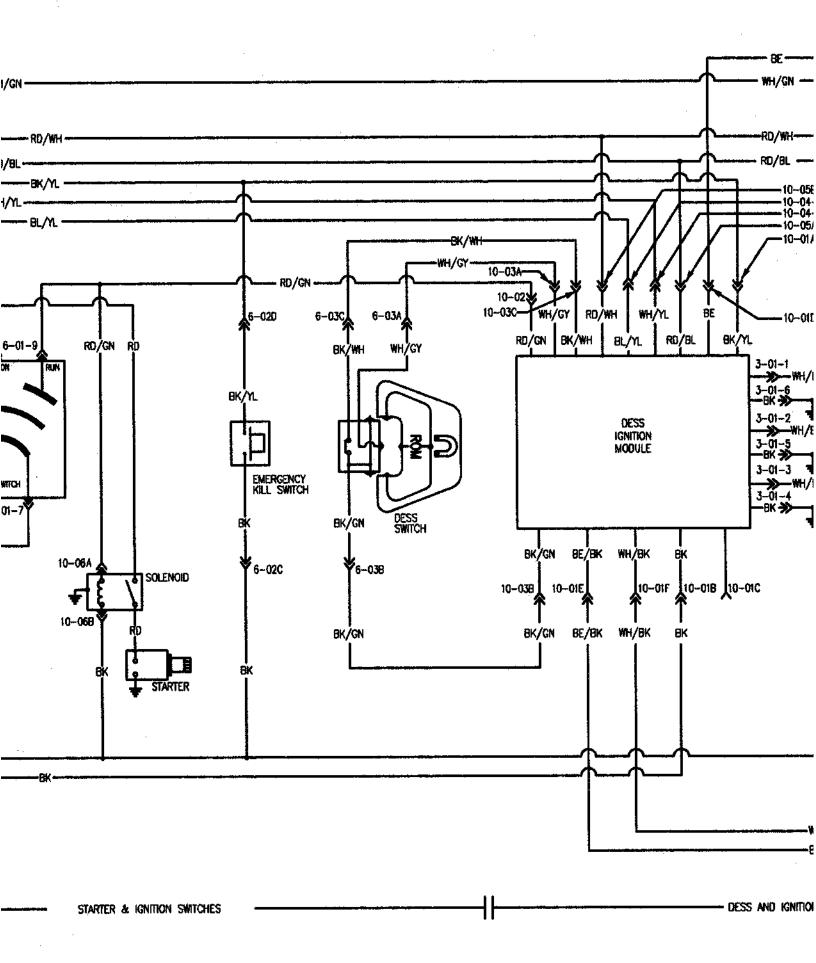


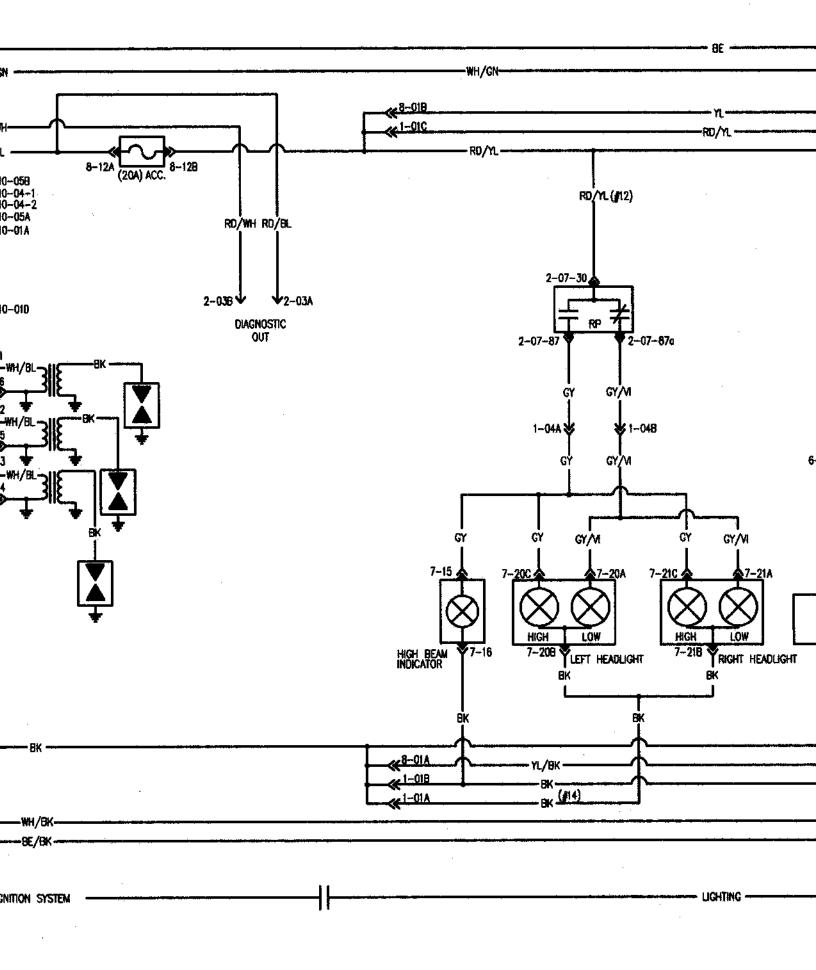
- LIGHTING -

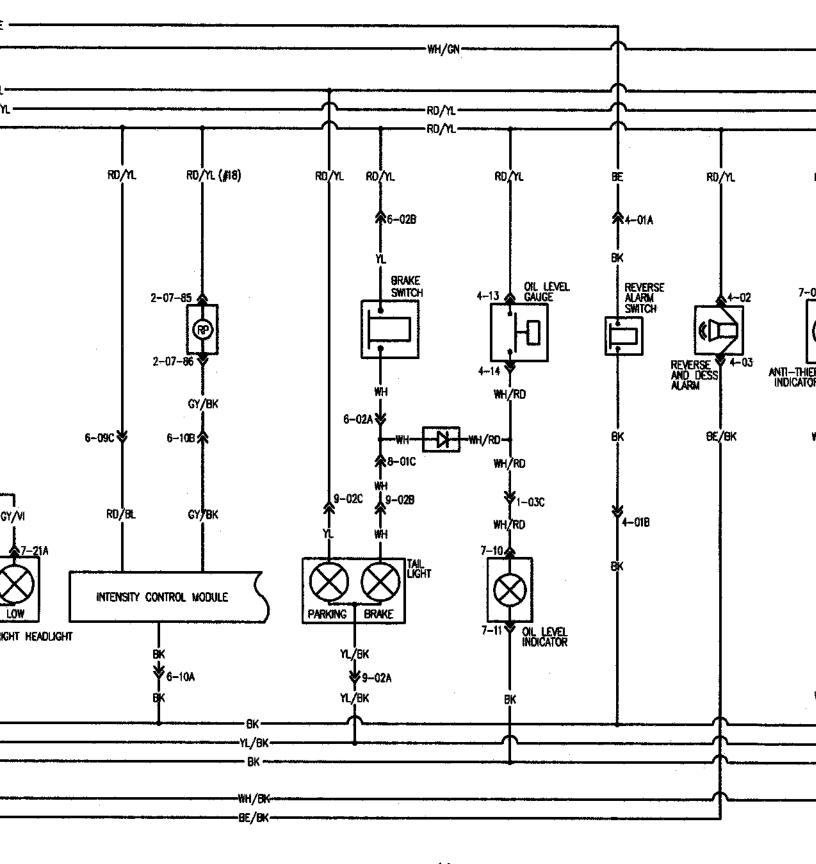
-||



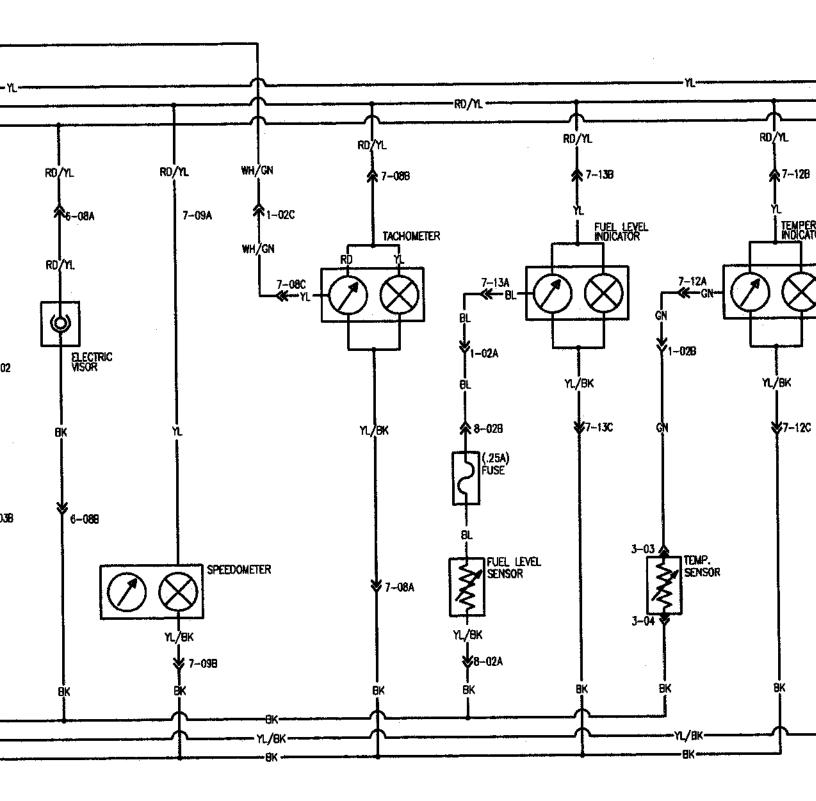
HEATING ELEMENTS

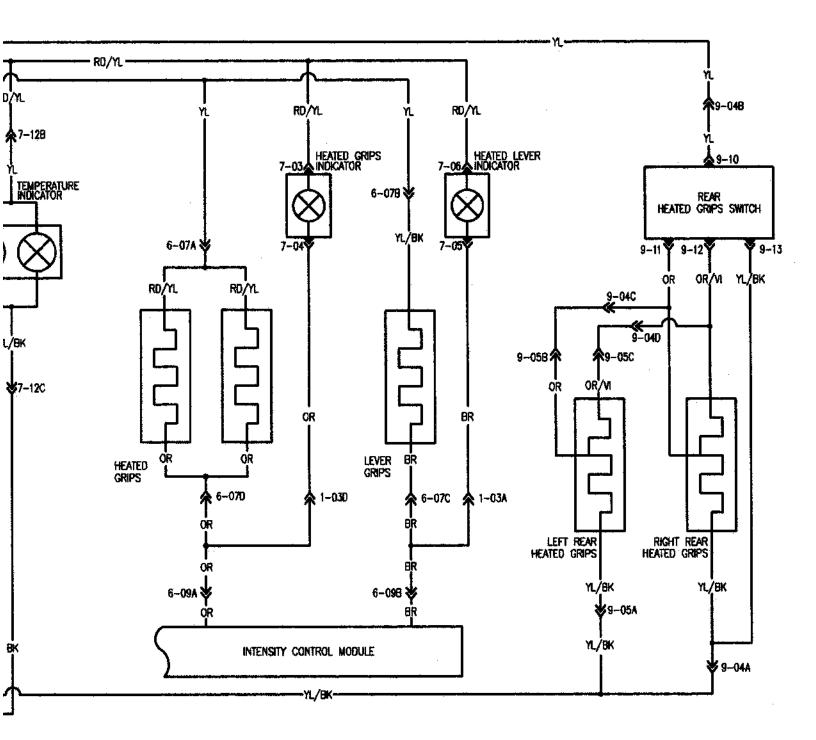

Mar 197


ANNEX 3 GT 700

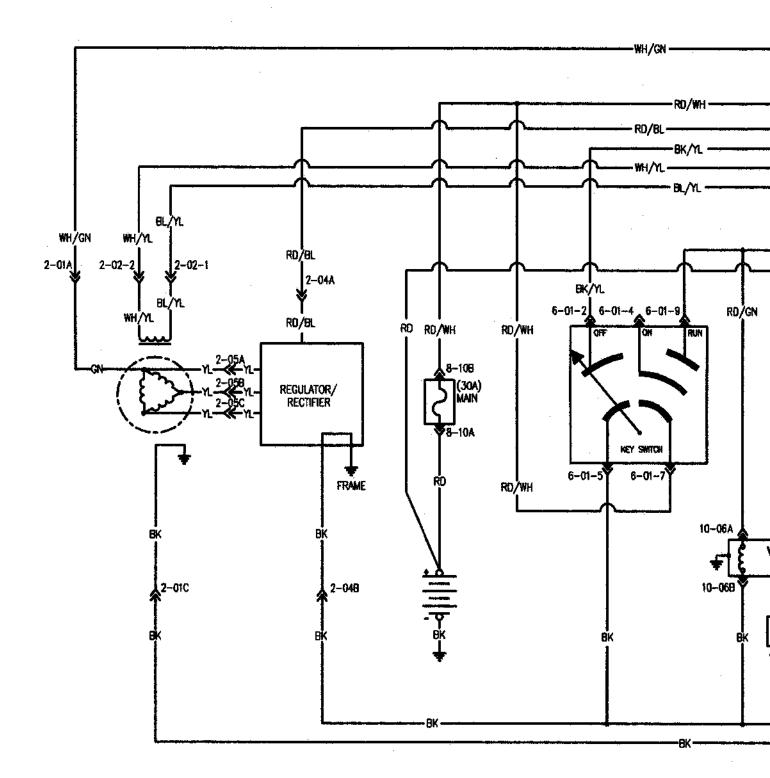

'98 GRAND TOURING 700

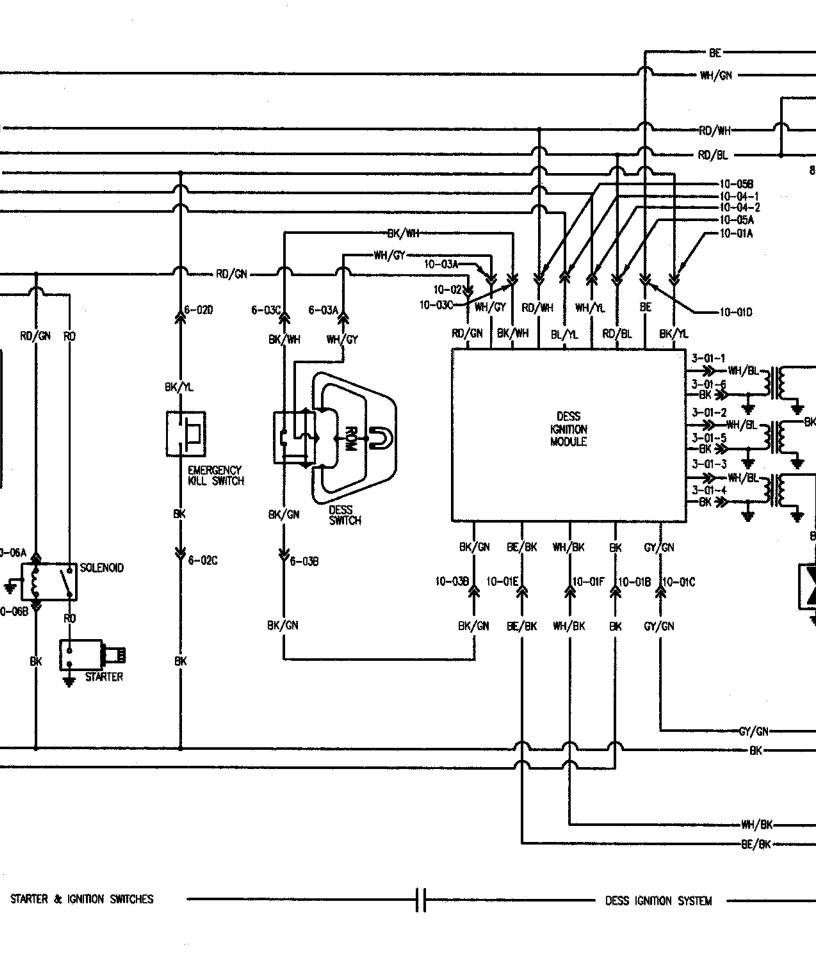
STAR

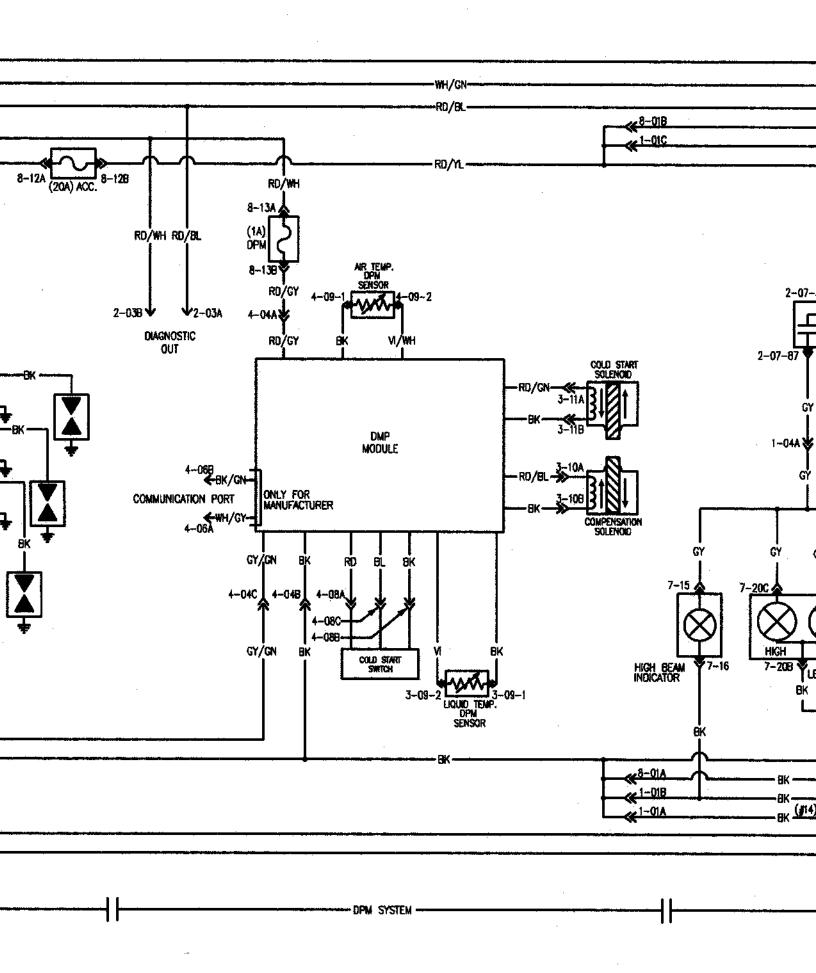


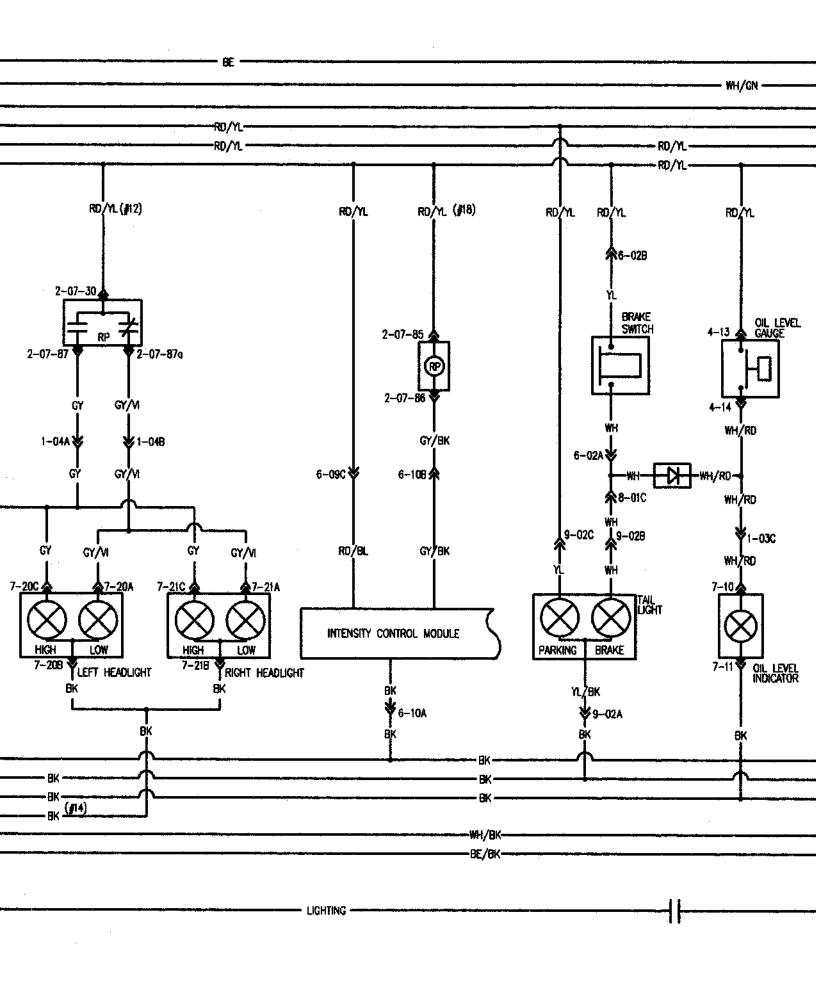


ŧŀ

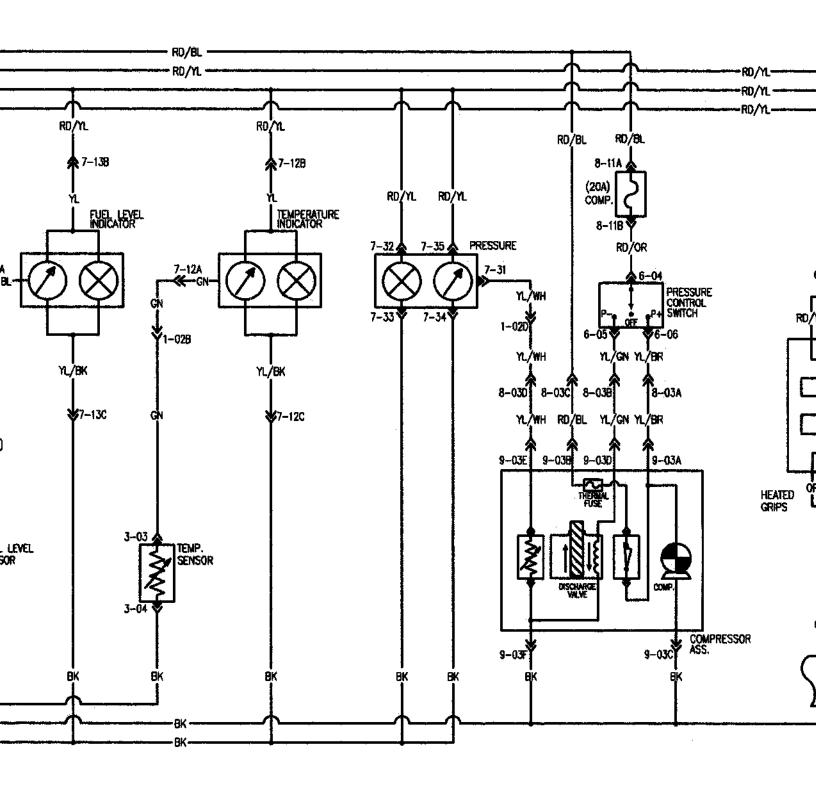

ing -

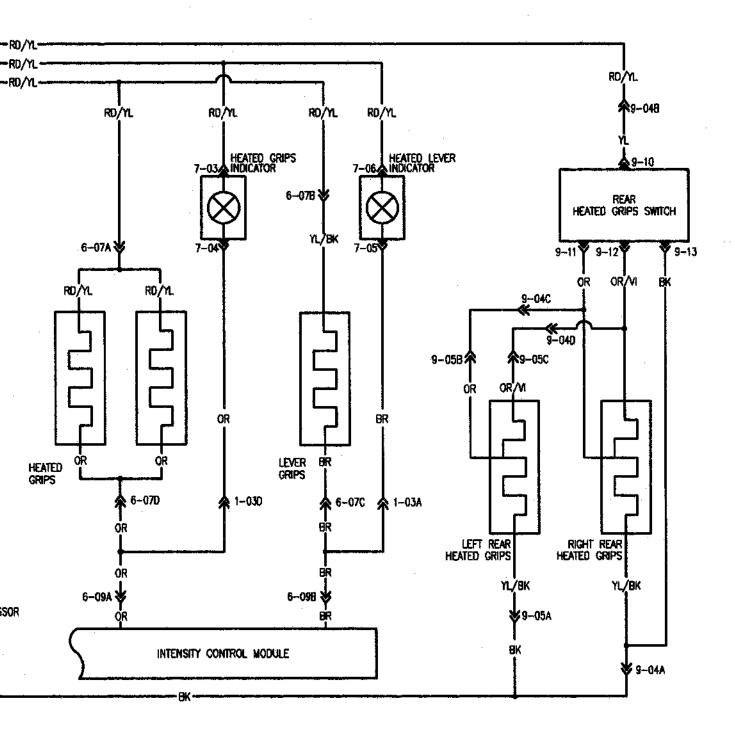

ANNEX 4 GT SE


'98 GRAND TOURING SE



POWER SUPPLY SYSTEM -


STARTER &



AIR SUSPENSION CONTROL SYSTEM

11

HEATING ELEMENTS

VERSION FRANÇAISE ÉGALEMENT DISPONIBLE